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Problem 1 (Almost SAT) 

References: 

Joves Notes 

 

Approach: 

The Almost-SAT problem takes as input a Boolean formula on n literals, in 

conjunctive normal form with m clauses. The output is an assignment of the literals 

such that exactly m −1 clauses evaluate to TRUE, if such assignment exists, and 

outputs NO otherwise. 

In order to prove that Almost-SAT is NP-complete, I will show that  

- A solution to Almost-SAT can be verified in polynomial time such that 

𝐴𝑙𝑚𝑜𝑠𝑡-𝑆𝐴𝑇	 ∈ 𝑁𝑃 

- A known NP-complete problem, the SAT problem, can be reduced to an 

Almost-SAT problem i.e., 𝑆𝐴𝑇	 → 	𝐴𝑙𝑚𝑜𝑠𝑡-𝑆𝐴𝑇 

 

NP Proof:  

For a given input I to the Almost-SAT problem, we look for a solution S.  

- If a solution doesn’t exist, we return NO. 

- If a solution does exist, we can take the T/F assignments from S and plug-

them into each clause of I to verify the solution. Since it is O(n) to check each 

clause, the runtime is O(mn) to verify the entire conjunctive form with m 

clauses. Since this is polynomial time, we have proven that 𝐴𝑙𝑚𝑜𝑠𝑡-𝑆𝐴𝑇	 ∈

𝑁𝑃 



Input: ( 𝑆𝐴𝑇	 → 	𝐴𝑙𝑚𝑜𝑠𝑡-𝑆𝐴𝑇) 

Let’s take the input i to the SAT problem in a conjunctive normal form (CNF), with 

n literals and m clauses. Now let's create a new variable x and transform the input 

such that 𝑖′ = 𝑖 ∩ 𝑥 ∩ x6. This new CNF i’, which now has 𝑛 + 1 variables denoted 

by n’ and 𝑚	 + 	2 clauses denoted by m’, is the input to Almost-SAT. 

Runtime for this part is O(1) since we are just adding two constant clauses. 

 

Output: ( 𝑆𝐴𝑇	 → 	𝐴𝑙𝑚𝑜𝑠𝑡-𝑆𝐴𝑇) 

If Almost-SAT returns NO, return NO for SAT. 

Otherwise, return the Almost-SAT solution S by setting x=True and evaluating i’ 

CNF. 

 

Runtime for this O(n) to assign values for n variables. 

 

Correctness: 

We can show the correctness of this reduction by showing that: 

𝑖	𝑖𝑠	𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑	ó	𝑖’	𝑖𝑠	𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑	𝑤𝑖𝑡ℎ	𝑚’ − 1	𝑐𝑙𝑎𝑢𝑠𝑒𝑠 

First, we show the forward implication i.e., if i is satisfied then i’ is satisfied with m’-

1 clauses. Since x is set to True in i’ which implies the clause 𝑥̅ evaluates to False, if 

i is satisfied, then i’ is satisfied with m’-1 clauses. 

Next, we show the reverse implication i.e., if i’ is satisfied with m’-1 clauses, then i 

is satisfied. No matter whether we set the value of x to True or False, one of the 

clauses out of 𝑥 ∩ 𝑥̅ will always come true, and the other will always come false. 

Therefore, it has no impact on the outcome of other clauses. Therefore, when i’ is 

satisfied with m’-1 clauses, then i is guaranteed to be satisfied. 



Problem 2 (Clique-IS) 

References: 

Joves Notes 

 

Approach: 

 Given an undirected graph G = (V, E) and an integer k, the Clique-IS problem 

returns a clique of size k as well as an independent set (IS) of size k, provided both 

exist. 

In order to prove that this Clique-IS problem is NP-complete, I will show that  

- A solution to Clique-IS problem can be verified in polynomial time such that 

Clique-IS	 ∈ 𝑁𝑃 

- A known NP-complete problem, the Clique problem, can be reduced to a 

Clique-IS problem i.e., Clique	 → 	Clique-IS 

 

NP Proof: 

For a given input graph G = (V, E) and integer k to the Clique-IS problem, we look 

for a solution consisting of a clique C and Independent Set S. 

- If a solution doesn’t exist for either C or S, we return NO. 

- If a solution does exist, we need to verify it is valid solution by checking the 

following three things: 

o |C| == |S| == k. O(1) time complexity 

o C is a valid clique i.e., for all pairs of vertices (v, w) in C, an 𝑒𝑑𝑔𝑒	e =

(𝑣, 𝑤) ∈ 𝐸. O(n^2) time complexity. 

o S is a valid independent set i.e., for all pairs of vertices (v, w) in S, an 

𝑒𝑑𝑔𝑒	𝑒 = (𝑣, 𝑤) 	∉ 𝐸. O(n^2) time complexity. 



Since we can verify the solution of Clique-IS problem in polynomial time, we have 

proven that Clique-IS	 ∈ 𝑁𝑃 

 

Input: (Clique	 → 	Clique-IS) 

We take the input to the Clique problem - an undirected graph G = (V, E) and 

integer k. Now we create another graph G’ = (V’, E) which is a copy of G but with 

additional vertices such that V’ = V + S where S = Independent set of G with |S| = k. 

No new edges will be added to G’. Therefore, the new graph G’ can be created by 

copying G in O(|V| + |E|) time and adding new vertices S in O(|V|) time. Hence, 

the runtime remains polynomial in original input size. 

 

Output: (Clique	 → 	Clique-IS) 

If Clique-IS returns NO, return NO for Clique. 

Otherwise, Clique-IS solution consists of a Clique C and Independent Set I as the 

outputs with equal size k. Return only the Clique C computed while solving the 

Clique-IS problem on G’. Since no edges were added, the Clique C for G’ will also be 

the Clique for G. 

 

We will also drop the independent vertices from G’ with no edges, which yields the 

original graph G since no edges were added. Runtime for this removal is O(|V|) 

since |I| = k <= |V|. 

 

Correctness: 

We can show the correctness of this reduction by showing that: 

C	is	a	clique	in	G	ó	C	is	a	clique	in	G' 



First, we show the forward implication i.e., if C is a clique in G, then C is a clique in 

G’. Since graph G and G’ have the same set of edges, the vertices that meet the 

condition for being added to a clique in G are the same vertices that will be added 

to the clique of G’. 

Next, we show the backward implication i.e., if C is a clique in G’, then C is a clique 

in G. The only additional vertices that exist in G’ that are not in G are the 

independent set vertices which cannot be a part of any clique. And the number of 

edges is the same in G’ and G. Therefore, the clique computed for G’ will be the 

same as the clique for G. 

 

 


