
Solutions to Homework Practice Problems

Practice problems:

1. [DPV] Problem 8.1 (TSP optimization versus search)

Optimization versus search. Recall the traveling salesman problem:

• TSP

• Input: A matrix of distances; a budget b

• Output: A tour which passes through all the cities and has length ≤ b, if such a tour
exists.

The optimization version of this problem asks directly for the shortest tour.

• TSP-OPT

• Input: A matrix of distances

• Output: The shortest tour which passes through all the cities.

Show that if TSP can be solved in polynomial time, then so can TSP-OPT.

Solution:

In order to show this, we will show that TSP-OPT reduces to TSP in polynomial time.
The idea of this reduction is to use binary search with the b input for TSP to find the length
of the shortest tour (then TSP will find the shortest tour itself). Let the distance matrix
be denoted D. First, we need to find an upper bound B for the length of the shortest path.
We can set B to be the sum of all distances in the distance matrix (so B =

∑
i,j Di,j). Then,

we run TSP with inputs D and B/2. If this finds a tour with length at most B/2, then we
know the shortest tour has length in the range [0, B/2]. Otherwise, the shortest tour has
length in the range [B/2, B]. Here is where we can apply binary search; for each successive
iteration, run TSP on the midpoint of the remaining range for the length of the shortest
path, then eliminate half of the range based on whether TSP finds a tour. Continue this
recursive process until the range is narrowed to a single integer number, then return the
path found by TSP on this integer. TSP will be run O(logB) times (since this is a binary
search from 0 to B). The input size of TSP-OPT must be of length O(logB), since B was
the sum of all the distances in D. Therefore, this reduction is polynomial, and if TSP can
be solved in polynomial time, then so can TSP-OPT.
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2. [DPV] Problem 8.3 (Stingy SAT)

STINGY SAT is the following problem: given a set of clauses (each a disjunction of literals)
and an integer k, and a satisfying assignment in which at most k variables are true, if such
an assignment exists. Prove that STINGY SAT is NP-complete.

Solution:

First, we show that Stingy SAT is in NP. Let the input formula be denoted by f , and let
n be the number of variables and m be the number of clauses. Given a proposed satisfying
truth assignment σ for f , we can just check clause by clause that σ satisfies at least one
literal in each clause; this takes O(n) time per clause and thus O(nm) total time. Then
in O(n) time, we count how many variables are set to be TRUE in σ and check that the
number is larger than k or not.

Now, we show that Stingy SAT is as hard as a problem known to be NP-Complete by
reducing SAT → Stingy SAT. Suppose you have an input formula f for SAT with n vari-
ables and m clauses. Now, run Stingy SAT on f with k = n. Clearly, every assignment
over n variables will have at most n variables set to true, so this extra restriction will not
constrain the set of solutions. Then, if Stingy SAT returns a satisfying assignment, that
assignment will also satisfy the original SAT problem. Likewise, if Stingy SAT returns
that there is no such assignment, then there can be no solution to the SAT problem. The
only transformation between SAT and Stingy-SAT was setting k = n; the input formula
f and resulting truth assignment from Stingy SAT remain unchanged, so our transfor-
mations take O(1) constant time (which is polynomial). Then, since SAT is NP-complete,
Stingy SAT must at least as hard as SAT.

Given that Stingy SAT is in NP and at least as hard as SAT, we conclude that Stingy
SAT is NP-Complete.

3. [DPV] Problem 8.4 (a),(b),(c) (Clique-3)

Consider the CLIQUE problem restricted to graphs in which every vertex has degree at most
3. Call this problem CLIQUE-3.

(a) Prove that CLIQUE-3 is in NP.

Solution:

Given an input graph G = (V,E), a goal g, and a potential solution set S ⊆ V , it is easy to
verify whether S is a clique by checking that all pairs of vertices in S are connected in O(n2)
time, and to check that |S| ≥ g in O(n) time. Since a solution can be verified in polynomial
time, clique-3 is in NP.

(b) What is wrong with the following proof of NP-completeness for CLIQUE-3? We know
that the CLIQUE problem in general graphs is NP-complete, so it is enough to present a
reduction from CLIQUE-3 to CLIQUE. Given a graph G with vertices of degree ≤ 3, and a
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parameter g, the reduction leaves the graph and the parameter unchanged: clearly the out-
put of the reduction is a possible input for the CLIQUE problem. Furthermore, the answer to
both problems is identical. This proves the correctness of the reduction and, therefore, the
NP-completeness of CLIQUE-3.

Solution:

The direction of this reduction is wrong. In order to show that clique-3 is NP-complete,
we would instead need to show that some known NP-complete problem (such as clique)
reduces to clique-3.

We want to prove that clique-3 is a computational difficult problem. To do that we want
to show that if we somehow solve clique-3 efficiently then we can efficiently solve every
problem in NP. We know that clique is NP-complete and hence if we can efficiently solve
clique then we can efficiently solve every problem in NP. Therefore, we need to show that
clique → clique-3, but the above proof does the reverse reduction.

(c) It is true that the VERTEX COVER problem remains NP-complete even when restricted to
graphs in which every vertex has degree at most 3. Call this problem VC-3. What is wrong
with the following proof of NP-completeness for CLIQUE-3?

We present a reduction from VC-3 to CLIQUE-3. Given a graph G = (V,E) with node degrees
bounded by 3, and a parameter b, we create an instance of CLIQUE-3 by leaving the graph
unchanged and switching the parameter to |V | − b. Now, a subset C ⊆ V is a vertex cover
in G if and only if the complementary set V − C is a clique in G. Therefore G has a vertex
cover of size ≤ b if and only if it has a clique of size ≥ |V | − b. This proves the correctness
of the reduction and, consequently, the NP-completeness of CLIQUE-3.

Solution:

The reduction is incorrect. Specifically, the statement “a subset C ⊆ V is a vertex cover in
G if and only if the complementary set V −C is a clique in the same graph G” is incorrect.
While it would be correct to say “a subset C ⊆ V is a vertex cover in G if and only if the
complementary set V − C is a clique in the complementary graph Ḡ = (V, V 2 − E)”, the
complement of G is not guaranteed to retain the property that every vertex has at degree
at most 3, so this alternate statement is not useful for the desired reduction.
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4. [DPV] Problem 8.10 (a) (Subgraph isomorphism)

Proving NP-completeness by generalization. For each of the problems below, prove that it is
NP-complete by showing that it is a generalization of some NP-complete problem we have
seen in this chapter.

(a) SUBGRAPH ISOMORPHISM: Given as input two undirected graphs G and H, determine
whether G is a subgraph of H (that is, whether by deleting certain vertices and edges of H
we obtain a graph that is, up to renaming of vertices, identical to G), and if so, return the
corresponding mapping of V (G) into V (H).

Solution:

First, we show that Subgraph isomorphism is in NP. For a pair of graphs G = (V,E)
and H = (V ′, E ′), given a mapping π from V to V ′, we can verify the solution in at most
O((|V | + |E|)|E ′|) polynomial time by checking that each edge (u, v) ∈ E from G maps to
an edge (π(u), π(v)) ∈ E ′ from H.

Now, we show: Clique → Subgraph isomorphism. Let the inputs to Clique be
H = (V ′, E ′) and an integer k. To construct the input to Subgraph isomorphism, let
G = (V,E) be a complete graph (every pair of distinct vertices is connected by a unique
edge) where |V | = k. Run Subgraph isomorphism on G and H. H has an clique of size k
if and only if there is a solution to Subgraph isomorphism, with the clique being the set
of vertices that map to the subgraph G. The solution will also provide a mapping from V
to V ′, allowing us to find the clique in the original graph H. Why do we know this is true?
A clique is just a complete graph, so finding a clique in H is a special case of Subgraph
isomorphism where G is a complete graph.

This input reduction takes polynomial time, since it creates a complete graph with k vertices
in O(k2) time (k being bounded by |V ′|, the number of vertices in H). Likewise, the output
mapping is used to determine the vertices of the Clique in H in O(|V |) time.

Then, since Clique is NP-complete, Subgraph isomorphism must be as well.
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5. (Algorithm design problem)

This problem is designed to make you think about the following idea: sometimes a combi-
nation (or modification) of a hard problem is not necessarily more difficult. Problem 8.14
explores this idea further.

Design an efficient algorithm to solve the following problem:
Input: A directed graph G = (V ;E).
Output: A cycle if G has one, or a path that visits all vertices, if there is one.

Note that your algorithm will output NO only if there are no cycles in G and there is
no path visiting all vertices.

Solution:

Let’s break the output into three parts: (1) if a cycle exists, output it; (2) if no cycle exists
but a path exists, output it; if neither a cycle nor a path exists, output NO. Tackling each
in order provides the solution.

First, consider what it means for a directed graph to contain a cycle – this occurs when
there exists a back edge, something easily detected via DFS. So, for Step 1 we run DFS

on G. We then, for each edge
−−−→
(v, u) ∈ E, look to find an edge such that pre[u] < pre[v] <

post[v] < post[u] – a back edge which indicates a cycle exists between u and v. We can
then recover the cycle by examining the prev[] array which defines the DFS tree. And we
note that each step (DFS, checking for a back edge, recreating the cycle) takes O(n+m) time.

Now, consider what it means if no cycle is found – our directed graph is acyclic, we have
DAG. And in a DAG, there exists a path which visits all vertices only if there is a single
unique topological sorting. How do we determine if that is the case? DFS output a topolog-
ical sorting of the vertices: we use that sorting to confirm that for each vertex, a directed
edge exists to the next vertex in topological order. That is, given topo() which represents
the vertices sorted in descending post-order, for each value topo(i) where 1 ≤ i < n, there

exists an edge
−−−−−−−−−−−−−−→
(topo[i], topo[i+ 1]). The sorting is the path which visits all vertices. Again,

DFS takes O(n+m) time, as does checking the topological sorting.

If neither case is true we output NO – there are no cycles present, and there is no path
visiting all vertices.

The lesson? While the general search problem of finding a Hamiltonian/Rudrata path in
a directed graph is NP-Hard, modifying the problem such that we constrain the graph by
eliminating the presence of a cycle makes it a problem in P.


