
CS 6515 GA – HW 5. Due: 10/10/2022 Name: 1

Practice problems (don’t turn in):

1. [DPV] Problems 5.1, 5.2. Practice fundamentals of MST designs.

2. [DPV] Problem 5.9 (multiple statements about MST. We will provide the answer to a few, you
are welcome to try them all.)

CS 6515 GA – HW 5. Due: 10/10/2022 Name: 2

Instructions.

For the graded problems, you are allowed to use the algorithms from class as black-boxes
without further explanation. These include

• DFS (outputs connected components, a path between two vertices, topological sort
on a DAG. You also have access to the pre and post arrays!), BFS and the Explore
subroutine.

• Dijkstra’s algorithm to find the shortest distance from a source vertex to all
other vertices and a path can be recovered backtracking over the pre labels.

• Bellman-Ford and Floyd-Warshall to compute the shortest path when weights are allowed
to be negative.

• SCCs which outputs the strongly connected components, and the metagraph of connected
components.

• Kruskal’s and Prim’s algorithms to find MST.

• Ford-Fulkerson and Edmonds-Karp to find max flow on networks.

When using a black-box, make sure you clearly describe which input you are passing
to it and how you use the output from or take advantage of the data structures created
by the algorithm. To receive full credit, your solution must:

• Include the description of your algorithm in words (no pseudocode!).

• Explain the correctness of your design.

• State and analyse the running time of your design (you can cite and use the running
time of black-boxes without further explanations).

Unless otherwise indicated, black-box graph algorithms should be used without modification.

Example: I take the input graph G, I first find the vertex with largest degree, call it v∗. I take the
complement of the graph G, call it G. Run Dijkstra’s algorithm on G with s = v∗ and then I get
the array dist[v] of the shortest path lengths from s to every other vertex in the graph G. I square
each of these distances and return this new array.

We don’t want you to go into the details of these algorithms and tinker with it, just use it as a
black-box as showed with Dijkstra’s algorithm above. Make sure to explain your algorithm in words,
no pseudocode.

CS 6515 GA – HW 5. Due: 10/10/2022 Name: 3

Problem 1 (MCQs on MST and Ford-Fulkerson.)

For each part, choose the answer that is always true. You do not need to explain your choice. Enter
your responses directly on Gradescope.

Part (a): (2.5 points) Let {G = (V,E), s, t ∈ V, {ce}e∈E} be a network. Consider the flow f = 0
for all e ∈ E. The residual network {Gf = (V,Ef), s, t ∈ V, {ĉe}e∈Ef }

A: has more edges than the original graph G = (V,E).
B: has a unique strongly connected component.
C: satisfies G = Gf .
D: has at least one edge with capacity ĉe 6= ce.

Part (b): (2.5 points) Let {G = (V,E), s, t ∈ V, {ce}e∈E} be a network. You are told that ce is
a natural number, for all e ∈ E.

True or False: the flow has integer values after every round of Ford-Fulkerson.

A: True.
B: False.

Part (c): (2.5 points) Let {G = (V,E), s, t ∈ V, {ce}e∈E} be a network and f∗ a maximum flow.
An edge e ∈ E is called a bottleneck edge if increasing its capacity increases the size of the maximum
flow f∗.

True or False: Every saturated edge (this is, f∗(e) = ce) in the network is a bottleneck edge.

A: True.
B: False.

Part (d): (2.5 points) True or False: If the edge of minimum weight on a graph is unique, then
it belongs to any MST of G.

A: True.
B: False.

Part (e): (2.5 points) True or False: If a connected, undirected, weighted graph G = (V,E) has
a unique cycle, there is a linear time algorithm to find a MST of G.

A: True.
B: False.

Part (f): (2.5 points) Let G = (V,E) be a connected, undirected, weighted graph with weights
w(e) = 2022 for all e ∈ E. True or False: there is a linear time algorithm to find a MST of G.

A: True.
B: False.

CS 6515 GA – HW 5. Due: 10/10/2022 Name: 4

Part (g): (2.5 points) Let G = (V,E) be a connected, undirected, weighted graph with all
weights distinct. For every vertex v ∈ V , denote by ev the edge connected to v of lightest weight.
Note that this edge depends only on v, and we can have ev = ev′ for vertices v 6= v′.

True or False: The set {ev, v ∈ V } is part of every MST of G.

A: True.
B: False.

Part (h): (2.5 points) Let G = (V,E) be a connected, undirected, weighted graph. Consider
the following Divide and Conquer Algorithm to build a MST of G.

• If V = 2, return E. (In our class, unless otherwise stated, we assume all graphs are simple).

• Else, partition V = V1 ∪ V2 into two disjoint sets of equal size, recursively find MSTs T1 and
T2 on V1 and V2, respectively.

• Find an edge e of minimum weight connecting one vertex of V1 to one vertex of V2. Return
T1 ∪ T2 ∪ {e}.

True or False: This algorithm outputs a MST of G.

A: True.
B: False.

Problem 2 (Edge on MST)

You are given a weighted graph G = (V,E) with positive weights, ci for all i ∈ E. Give a linear
time (O(|E| + |V |)) algorithm to decide if an input edge e = (u, v) ∈ E with weight ce is part of
some MST of G or not. You should describe your algorithm in words (a list is okay); no pseudocode.
Explain why it is correct and justify its running time.

