Practice problems:

1. [DPV] Problems 5.1, 5.2 (Practice fundamentals of MST designs)

5.1

(a) the cost is 19

(b) there are 2 possible MSTs

(c)

Edge included	Cut
AE	$\{A,B,C,D\} \& \{E, F,G,H\}$
EF	${A,B,C,D,E} \& {F, G,H}$
BE	${A,E, F, G,H} \& {B,C,D}$
\mathbf{FG}	$\{A,B,E,F\} \& \{C,D,G,H\}$
GH	${A,B,E, F,G} \& {C,D,H}$
CG	$\{A,B,E, F, G,H\} \& \{C,D\}$
GD	$\{A,B,C,E, F, G,H\}$ & $\{D\}$

5.2 (a)

Vertex included	Edge included	Cost
А		0
В	AB	1
\mathbf{C}	BC	3
G	CG	5
D	GD	6
F	GF	7
Н	GH	8
Ε	AE	12

(B) Here are the values for the parent pointer π at each iteration of Kruskals. From this you should be able to deduce the disjoint-sets.

Union	Values of π for each vertex
Start	[A, B, C, D, E, F, G, H]
(A,B)	[B, B, C, D, E, F, G, H]
(F,G)	[B, B, C, D, E, G, G, H]
(D,G)	[B, B, C, G, E, G, G, H]
(G,H)	[B, B, C, G, E, G, G, G]
(C,G)	[B, B, G, G, E, G, G, G]
(B,C)	[B, G, G, G, E, G, G, G]
(A,E)	[G, G, G, G, G, G, G, G, G]

[DPV] Problem 5.9

- (a) False. Consider a graph where a vertex is adjacent to a single edge
- (b) **True**. Consider the order in which edges would be processed by Kruskal's
- (c) True. A minimum weight edge would be a candidate for at least one possible MST
- (d) **True**. The *Cut Property* assures this