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Problem 1 (Computopia) 

a) Algorithm: Let’s consider a directed graph G such that G = (V, E), where V 

represents the vertices (all the intersections in the city), and E represents 

the directed edges (all the one-way streets). We can show that it is legally 

drivable from any intersection in the city to any other intersection if we can 

show that G is a single strongly connected component (SCC). In other words, 

all the vertices/intersections of G fall under one SCC. 

In order to show this, we pass in the directed graph G = (V, E) in the form of 

adjacency list as inputs to the SCC algorithm and we receive as outputs the 

strongly connected components and the meta graph of connected 

components. Then, we need to check that the meta graph consists of a 

single vertex and no edges as there can only be a single SCC.  

 

Runtime: Since the SCC black-box algorithm runs one DFS after another, the 

runtime is O(n+m), where n = |V| and m = |E|. Therefore, the algorithm 

runs in linear time as expected. 

 

Correctness: We can show the correctness of this approach by analyzing the 

alternative scenario where there can be multiple SCCs in the graph. In such a 

case, by the fundamental nature of SCCs, not every intersection/vertex in G 

is reachable from every other vertex, otherwise there wouldn’t be multiple 

SCCs. And hence, the only option that would satisfy the mayor’s claim is if 

the graph only had a single strongly connected component. 



b) Algorithm: Let’s consider a directed graph G such that G = (V, E), where V 

represents the vertices (all the intersections in the city), and E represents 

the directed edges (all the one-way streets). We can show that if one leaves 

from the town hall intersection, then they can legally get back no matter 

which path they take if we can show that the townhall intersection/vertex 

falls in the sink SCC of G. In other words, the townhall intersection and all 

the intersections you can get to from the town hall intersection fall within 

the sink SCC of G. 

In order to show this, like above, we pass in the directed graph G = (V, E) in 

the form of adjacency list as inputs to the SCC algorithm and we receive as 

outputs the strongly connected components and the meta graph of 

connected components. We analyze these outputs and verify that the 

strongly connected component where townhall intersection falls in is the 

sink SCC. We can do this by gathering all the vertices that are in the same 

SCC as the townhall, and running a DFS starting at the townhall vertex. If the 

DFS concludes by covering all the vertices of the townhall SCC and not 

visiting any other vertices outside the SCC, we can confirm that the townhall 

is in the sink SCC. This means, if one leaves from the townhall intersection, 

they can legally get back navigating the one-way streets. 

 

Runtime: Since the SCC black-box algorithm runs one DFS after another and 

the verification that townhall is in sink SCC is another DFS, the runtime is 

O(n+m), where n = |V| and m = |E|. 

 



Correctness: Only a sink SCC guarantees that the constituent vertices do not 

have an outgoing edge that leads outside the SCC. Every other SCC in the 

directed graph has an outgoing edge from the SCC and in such a case, there 

is no guarantee of the fundamental claim in this problem of being able to 

return to the townhall intersection. 

 

Problem 2 (All edges in shortest paths) 

Algorithm 

We are given the undirected graph G = (V, E), where V are the vertices and E are 

the edges. Let's say we can get the positive edge weight of an edge (𝑎, 𝑏) ∈ 𝐸 such 

that a, b ∈ V by using: 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑎, 𝑏) or 𝑤𝑒𝑖𝑔ℎ𝑡(𝑏, 𝑎) in O(1) time. 

 

First, we run Dijkstra's algorithm on G using vertex s as the source vertex. This 

gives us an output array, let's call it 𝑑𝑖𝑠𝑡!, which allows us to get the shortest 

distance from vertex s to any vertex v ∈ V using: 

𝑑𝑖𝑠𝑡![𝑣] in O(1) time 

 

Next, we run Dijkstra’s algorithm on the graph G again, but this time using vertex t 

as the source vertex. This gives us another output array, let’s call it 𝑑𝑖𝑠𝑡", which 

allows us to get the shortest distance from vertex t to any vertex v ∈ V using: 

𝑑𝑖𝑠𝑡"[𝑣] in O(1) time 

 



Now in order to determine the sets of edges that fall in at least one of the shortest 

paths from s to t, we loop through all the edges in E, and test the following 

condition on each edge, let's call it (𝑎, 𝑏) ∈ 𝐸 

𝑚𝑖𝑛{𝑑𝑖𝑠𝑡![𝑎] + 𝑤𝑒𝑖𝑔ℎ𝑡(𝑎, 𝑏) + 𝑑𝑖𝑠𝑡"[𝑏], 𝑑𝑖𝑠𝑡![𝑏] + 𝑤𝑒𝑖𝑔ℎ𝑡(𝑎, 𝑏) + 𝑑𝑖𝑠𝑡"[𝑎]} 

== 𝑑𝑖𝑠𝑡![𝑡] 

The edges that satisfy the condition above fall in at least one of the shortest paths 

from s to t. 

 

Run Time:  

Dijkstra’s algorithm to compute shortest distance from vertex s to all vertices: 

O((n+m)logn) where n = |V| and m = |E| 

Dijkstra’s algorithm to compute shortest distance from vertex t to all vertices: 

O((n+m)logn) where n = |V| and m = |E| 

Iterating through all edges to check if an edge falls in the shortest path from s to t: 

O(n) 

Therefore, the overall run time for my algorithm is O((n+m)logn) 

 

Correctness: 

An edge e can only fall in at least one shortest path from vertex s to t if there is a 

path from s to t such that it enters the edge e in one vertex, traverses and leaves 

from the other end towards t. Weight of such a path can be computed using 

minimum sum of three main sections: cost of getting from s to one vertex of edge 

e, weight of the edge e itself, and the cost of getting from the second vertex of 

edge e to vertex t. If the total weight of this path equals the weight of the shortest 

path from s to t, then the edge e is guaranteed to be on at least one shortest path. 


