
Solutions to Homework Practice Problems

[DPV] Problem 2.7 – Roots of unity

Solution:
For the sum, use the geometric series equality to get

1 + ω + ω2 + · · ·+ ωn−1 =
ωn − 1

ω − 1
= 0.

For the product, since 1 + 2 + · · ·+ (n− 1) = (n−1)n
2 we get

1ωω2 . . . ωn−1 = ω
(n−1)n

2

which equals 1 if n is odd and ω
n
2 = −1 for n even (remember that ω = e

2πi
n ).

[DPV] Problem 2.8
Solution:

(a). Given four coefficients, the appropriate value of ω where n = 4 is e(2πi)/4 = i.

We have FFT(1, 0, 0, 0) = (1, 1, 1, 1) Here’s the calculation:

Ae = (1, 0) = 1 + 0x, Ao = (0, 0) = 0 + 0x

A(ω0
4) = A(1) = Ae(1

2) + 1(Ao(1
2)) = 1 + 0(12) + 1(0 + 0(12)) = 1 + 1(0) = 1

A(ω1
4) = A(i) = Ae(i

2) + i(Ao(i
2)) = 1 + 0(i2) + i(0 + 0(i2)) = 1 + i(0) = 1

A(ω2
4) = A(−1) = Ae((−1)2)− 1(Ao((−1)2)) = 1 + 0((−1)2)− 1(0 + 0((−1)2)) = 1− 1(0) = 1

A(ω3
4) = A(−i) = Ae((−i)2)− i(Ao((−i)2)) = 1 + 0((−i)2)− i(0 + 0((−i)2)) = 1− i(0) = 1

The inverse FFT of (1, 0, 0, 0) = (1/4, 1/4, 1/4, 1/4).

(b). FFT(1, 0, 1,−1) = (1, i, 3,−i). Here’s the matrix form of the calculation:


A(ω0

4)
A(ω1

4)
A(ω2

4)
A(ω3

4)

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




1
0
1
−1

 =


1
i
3
−i



[DPV] Problem 2.9(a)
Solution:

We use 4 as the power of 2 and set ω = i.
The FFT of x + 1 is FFT(1, 1, 0, 0) = (2, 1 + i, 0, 1− i).
The FFT of x2 + 1 is FFT(1, 0, 1, 0) = (2, 0, 2, 0).
The inverse FFT of their product (4, 0, 0, 0) corresponds to the polynomial 1 + x + x2 + x3.

1



Types of binary search
Solution:

(a). Let’s begin the binary search by dividing the array into two subarrays defined as
follows B1 = {10, 23, 36, 47, 59, 64, 71, 82} and B2 = {95, 100, 116, 127, 138, 141, 152, 163}. Since
the number of entries is even we take the last element of B1 as our middle element. Since,
36 < 82 we take B1 and discard B2.

Next step, we divide B1 into two arrays. C1 = {10, 23, 36, 47} and C2 = {59, 64, 71, 82}.
Now since 36 < 47, we keep C1 and discard C2.

We follow the same process for C1 by dividing it into D1 = {10, 23} and D2 = {36, 47}.
Since 36 > 23, we keep D2 and discard D1.

Finally, we divide D2 into E1 = {36} and E2 = {47}. Since 36 is equal to the E1[1] we have
found 36 and the process is over.

(b) If we have an array of length n we expect the numbers {1, 2, 3, . . . , n} to be in the array.
Since, one number is missing this means there is at least one number such that its position
does not match its value. If mid is the position of the middle element, we first check to see
if A[mid] = mid. Since the array is sorted, if A[mid] = mid it means there are not numbers
missing from 1, 2, . . . ,mid, so we have to check the right half of the array. If there was a missing
number, it would have been replaced by a bigger number. This means, if A[mid] > mid, we
have to search the left half. As you reduce the input, track what the starting value should
be (initially it’s 1), call that S. If A[1] 6= S then the missing value is S. If they match, then
you divide the current input in half based on the value of A[mid], update S accordingly, and
recurse. If you get to a single element and A[i] = S then the missing value is A[i] + 1. To check
the running time is logarithmic, note that the recurrence relation is T (n) = T (n2 ) +O(1) which
solves to O(log(n)) by the Master Theorem.

2


