
Solutions to Homework 2 Practice Problem

[DPV] Problem 6.17 – Making change I (unlimited supply)
[DPV] Problem 6.18 – Making change II

See solutions in HW1 practice solutions.pdf

[DPV] 4.11 (length of shortest cycle on a graph)

Solution: As presented, we are given a directed graph with positive
edge weights. These conditions assure that there is no negative-weight cycle
within the graph. How do we find the length of the shortest cycle? Note that
the shortest cycle visiting vertices u and v has length d(u, v)+ d(v, u), hence
the answer we are looking for is

min
u,v

(d(u, v) + d(v, u))

Notice that if the quantity above is equal to infinity it means the graph is
acyclic, and we report that.

Our approach: run Floyd-Warshall on the given graph to get an array
{d(u, v)}u,v∈V of the distances between any pair of points. It is assumed
that at the beginning any (u, v) pair which is not represented by an edge
[(u, v) /∈ E] is set d(u, v) = ∞. Now, inspect the diagonal in the array and
our shortest path is the min(d(v, v)) across all vertex v ∈ V

To see why this algorithm is correct: note first that every cycle visiting
vertices u and v can be broke into two directed paths: from u to v and from v
back to u. Each such path achieves its minimum length at d(u, v) and d(v, u)
respectively, hence the cycle of minimal length is given by this sum.

Floyd-Warshall takes O(|V |3) and the minimum can be found in O(|V |),
leading to an O(|V |3) runtime.

1

[DPV] 4.21 (Currency trading)

Solution: We are presented with a directed graph problem, so hopefully
we can use a known algorithm as the basis for our solution. The key is to
recognize two things: (a) the currency calculation is a product (b) we want
to maximize that product. We solve for the former by converting the ex-
change rates to logs (recalling that log(a) + log(b) = log(a × b)) , and solve
for the latter by using the negative of the log for our edge weight (flipping
maximization to minimization).

So, for part (a), we create a graph where the vertices represent coun-
tries, and the edges between them have a weight wi,j = − log ri,j. We then
run Bellman-Ford from vertex s to vertex t, and the minimal weight path
represents the most advantageous sequence of currency trades. This takes
O(|V ||E|) time.

For part (b), we run one more iteration of Bellman-Ford, and if any of
the distances (weights) change, we have detected a negative cycle – such a
cycle represents the trading anomaly which allows for infinite profit.

[DPV] Problem 2.1 – Practice Multiplication

The product is 28,830. See 2.1 Practice Multiplication.pdf for the
value calculated at each level of the recursive stack.

2

[DPV] Problem 2.5 – Recurrence

Solution:
(a) T (n) = 2T (n/3) + 1 = O(nlog3 2) by the Master theorem

(b) T (n) = 5T (n/4) + n = O(nlog4 5) by the Master theorem

(c) T (n) = 7T (n/7) + n = O(n log7 n) = O(n log n) by the Master theorem

(d) T (n) = 9T (n/3)+n2 = O(n2 log3 n) = O(n2 log n) by the Master theorem

(e) T (n) = 8T (n/2)+n3 = O(n3 log2 n) = O(n3 log n) by the Master theorem

(f) T (n) = 49T (n/25) + n3/2 log n = O(n3/2 log n)
Hint: the contribution of level i of the recursion is (49

125
)iO(n3/2 log n).

(g) T (n) = T (n− 1) + 2 = O(n)

(h)

T (n) = T (n− 1) + nc =
n∑

i=1

ic + T (0) = O(nc+1)

(i)

T (n) = T (n− 1) + cn =
n∑

i=1

ci + T (0) = O(cn)

(j)

T (n) = 2T (n− 1) + 1 =
n−1∑
i=0

2i + 2nT (0) = O(2n)

(k)

T (n) = T (
√
n) + 1 =

k∑
i=0

1 + T (b)

where k is an integer such that n
1

2k is a small constant b (the size of the
base case). This implies that k = O(log log n) and T (n) = O(log log n).

3

[DPV] Problem 2.7 – Roots of unity

Solution:
For the sum, use the geometric series equality to get

1 + ω + ω2 + · · ·+ ωn−1 =
ωn − 1

ω − 1
= 0.

For the product, since 1 + 2 + · · ·+ (n− 1) = (n−1)n
2

we get

1ωω2 . . . ωn−1 = ω
(n−1)n

2

which equals 1 if n is odd and ω
n
2 = −1 for n even (remember that ω = e

2πi
n).

4

[DPV] Problem 2.14 – Erase Duplicates
Solution:

This is a straight forward application of the MergeSort algorithm.

STEP1: Sort the given list. The running time of this step is O(n log (n)).

STEP2: For i = 1 to n− 1: if ai = ai+1, delete ai from the list. Output
the final list. This list has no repeated terms. The running time of this step
is O(n).

Why the algorithm is correct: the list after step 1 is sorted, so if there are
repeated terms of aj for some j, they are all consecutive. STEP2 guarantees
a comparison of all elements with both of its neighbors and elimination of
one of the copies every time we found one. Hence no copies survived after
STEP2 is completed.

The running time is O(n log (n) + n) = O(n log (n)).

(Alternatively, you can modify the Merge subroutine to eliminate copies
at the same time that the merging is done. As this change adds constant
work at each level to test for and remove duplicates, this additional step does
not impact the overall run time.)

5

