
Name: 1

Homework 1.
Due: Monday, September, 5 2022 before 8:00am via Gradescope.

[DPV] Practice Dynamic Programming Problems

Suggested reading: Chapter 6 of the book.

[DPV] Problem 6.1 – Maximum sum
A contiguous subsequence of a list S is a subsequence made up of consecutive elements of S...

[DPV] Problem 6.4 – Dictionary lookup
You are given a string of n characters s[1...n],which you believe to be a corrupted text document

in which all punctuation has vanished...
[DPV] Problem 6.8 – Longest common substring

Given two strings x = x1x2 . . . xn and y = y1y2 . . . ym we wish to find the length of their longest
common substrings...
[DPV] Problem 6.17 – Making-change I

Given an unlimited supply of coins of denominations x1, x2, . . . , xn, we which to make change
for a value v...
[DPV] Problem 6.18 – Making change II

Consider the following variation on the change-making problem (Exercise 6.17): you are given
denominations x1, x2, . . . , xn, ...
[DPV] Problem 6.20 – Optimal Binary Search Tree

Suppose we know the frequency with which keywords occur in programs of a certain language,
for instance ...
[DPV] Problem 6.26 – Alignment

Sequence alignment. When a new gene is discovered, a standard approach to understanding its
function is to look through a database of known genes and find close matches...

(Jumping frog)
The official pet of 6515 is a frog named René, who live in a nice pond at GeorgiaTech. The pond

has n rocks in a row numbered from 1 to n, and René is trained to jump from rock i to rock i + 1
or rock number i + 4, where 1 ≤ i ≤ n − 1. Find the number of ways René can go from rock 1 to
rock n. Two ways are considered different if they jump on different subsets of rocks.

Example: for n = 6 there are three ways to get from rock 1 to rock 6. Those are:
1→ 2→ 3→ 4→ 5→ 6,
1→ 2→ 6, and
1→ 5→ 6.

See next page for homework problems.

1

Name: 2

Problem 1 (Jumping frog II)

(Read the last practice problem before you attempt this one! It is not necessary to solve the first one
to do this one.)

The current team of 6515 decided the pond was getting boring for René and decided to make it
a bit nicer. We set a n by n grid of stones! Starting from (i, j), René learned to jump to (i+1, j+2)
or (i + 2, j + 1). Find the number of ways to go from the top left corner (1, 1) to the bottom right
(n, n). (Faster (and correct) in asymptotic O(·) notation is worth more credit.)

(a) Define the entries of your table in words. E.g., T (i) or T (i, j) is

(b) State recurrence for entries of table in terms of smaller subproblems.

2

Name: 3

(c) Write pseudocode for your algorithm to solve this problem.

(d) Analyze the running time of your algorithm.

3

Name: 4

Problem 2 (electoral colleges)

In this problem, we want to determine the set of states with the smallest total population that can
provide the votes to win the electoral college. Formally, the problem is the following: You are given
a list of n states along with their population pi, and the number of electoral votes vi, for 1 ≤ i ≤ n.
Also, you are given Z, the number of electoral votes needed to win. All electoral votes of a state go
to a single candidate. Our goal is to find a set of states S with the smallest total population that
has at least Z electoral votes in total. You only have to output the total population of the set S,
you do not need to output the set itself.

Example: if n = 5, populations are P = [200, 100, 30, 700, 250], electoral votes are V = [5, 1, 2, 7, 6]
and Z = 12, then the solution is 480 since 480 = 200 + 30 + 250 and states 1, 3, 5 have 5 + 2 + 6 = 13
electoral votes. Note in this example: p2 > p3 but v2 < v3, this might occur, but shouldn’t affect
your algorithm. Design a dynamic programming algorithm to solve this problem. (Faster (and
correct) algorithm in big-O notation is worth more credit.)

(a) Define the entries of your table in words. E.g., T (i) or T (i, j) is

(b) State recurrence for entries of table in terms of smaller subproblems.

4

Name: 5

(c) Write pseudocode for your algorithm to solve this problem.

(d) Analyze the running time of your algorithm.

5

