
FFT

Xudong Hang

September 10, 2022

1 FFT

The discrete Fourier transform (DFT) of the n-vector (a0, a1, · · · , an−1) is de-
fined as 1

yk =

n−1∑
j=0

aje
i 2π

n jk. (1)

Let n be a power of 2 throughout the discussion. Note that yk = yk+n. So, the
value of k can be confined to one periodicity—k = 0, 1, · · · , n− 1 being a good
choice.

Let ωn = ei
2π
n . It is a n-th complex root of unity. ω0

n, ω
1
n, ω

2
n, · · · , ωn−1

n ,
are the n-th complex roots of unity. The DFT can be rewritten as

yk =

n−1∑
j=0

ajω
jk
n , (2)

for k = 0, 1, · · · , n− 1.
The task of computing the DFT of the n-length vector is the following matrix

multiplication

y0
y1
y2
y3
...

yn−2

yn−1


=



1 1 1 1 · · · 1 1
1 ωn ω2

n ω3
n · · · ωn−2

n ωn−1
n

1 ω2
n ω4

n ω6
n · · · ω

2(n−2)
n ω

2(n−1)
n

1 ω3
n ω6

n ω9
n · · · ω

3(n−2)
n ω

3(n−1)
n

...
...

...
...

. . .
...

...

1 ω
(n−2)
n ω

2(n−2)
n ω

3(n−2)
n · · · ω

(n−2)(n−2)
n ω

(n−1)(n−2)
n

1 ω
(n−1)
n ω

2(n−1)
n ω

3(n−1)
n · · · ω

(n−2)(n−1)
n ω

(n−1)(n−1)
n





a0
a1
a2
a3
...

an−2

an−1


.

(3)
A total of n2 multiplication operations are needed for this computation. How-
ever, the n×nmatrix in Eq. (3) has a unique structure which the FFT algorithm
takes advantage of to reduce the computation to Θ(n log n) time.

1Another popular definition puts a − sign on the exponent, which will be our inverse DFT.

1



The DFT defined in Eq. (2) can be written as the sum of two series

yk = yevenk + ωk
ny

odd
k , k = 0, 1, · · · , n− 1, (4)

where
yevenk = a0 + a2ω

2k
n + · · ·+ an−2ω

(n−2)k
n , (5)

and
yoddk = a1 + a3ω

2k
n + · · ·+ an−1ω

(n−2)k
n . (6)

Note that these two series have the same structure. Define b0 = a0, b1 = a2, · · · ,
bn/2−1 = an−2 and use the property of the complex roots of unity ω2k

2n = ωk
n,

Eq. (5) can be rewritten as

yevenk = b0 + b1ω
k
n/2 + · · ·+ bn/2−1ω

(n/2−1)k
n/2 =

n/2−1∑
j=0

bjω
jk
n/2, (7)

which is the exact definition of DFT in Eq. (2), but for a vector of length n
2 .

yodd is calculated in the similar way. So, computing the DFT of a length-n
vector can be transformed into computing the DFT of two length-n2 vectors. It
takes Θ(n) time to combine the results of the two smaller problems to get the
solution to the original problem, as described in Eq. (4). Thus, the running
time of the divide and conquer approach taken by FFT is

T (n) = 2T (
n

2
) + Θ(n), (8)

which solves to Θ(n log n).

1.1 Inverse DFT

Given the definition of DFT in Eq. (2), for l = 0, · · · , n − 1, we calculate the
following series

n−1∑
k=0

ykω
−kl
n =

n−1∑
k=0

(

n−1∑
j=0

ajω
jk
n )ω−kl

n

=

n−1∑
j=0

aj

n−1∑
k=0

ω(j−l)k
n

=

n−1∑
j=0

aj(nδjl)

= nal.

So,

al =
1

n

n−1∑
k=0

ykω
−kl
n , l = 0, 1, · · · , n− 1 (9)

is the inverse DFT. Note that the inverse DFT differs from the DFT defined in
Eq. (2) only in the constant factor n and the change from ωn to ω−1

n . So, the
FFT approach can be applied to computing the inverse DFT as well.

2



2 Application to polynomial multiplication

A polynomial of degree n− 1, given by

A(x) = a0 + a1x+ · · ·+ an−1x
n−1, (10)

can be represented by the vector of its coefficients, (a0, a1, · · · , an−1). A polyno-
mial of degree n−1 is also uniquely defined by any n distinct points (x0, A(x0)),
· · · , (xn−1, A(xn−1)) on it [1]. The former is the coefficient representation and
the latter is the point-value representation.

Multiplying two degree-(n−1) polynomials (a0, a1, · · · , an−1) and (b0, b1, · · · , bn−1),
the result is a degree-(2n− 2) polynomial (c0, c1, · · · , c2n−2), in which

cj =

j∑
k=0

akbj−k,

for j = 0, 1, · · · , 2n− 2.
The näıve approach of polynomial multiplication—calculating c0, · · · , c2n−2—

takes Θ(n2) time for the above problem. However, if the point-value representa-
tion is given—2n−1 point values needed for both polynomials—the polynomial
multiplication is just 2n− 1 number multiplication operations. The result is of
course in point-value representation.

The idea is, to multiply two polynomials in coefficient representation, we
first transform them into point-value representation, then compute the result in
point-value representation, and finally transform the result back to coefficient
representation. For an easy description, we append 0s to the given vectors to
make their length 2n, that is, (a0, a1, · · · , a2n−1) and (b0, b1, · · · , b2n−1), where
an (bn) through a2n−1(b2n−1) are zero.

Since any ≥ 2n − 1 points can be chosen for the point values, we choose
the 2n 2n-th complex roots of unity. The point values for the polynomial in
Eq. (10) are

A(ωk
2n) =

2n−1∑
j=0

ajω
jk
2n, (11)

for k = 0, 1, · · · , 2n − 1. Note that Eq. (11) is exactly the DFT defined in
Eq. (2) for the vector (a0, a1, · · · , a2n−1) of length 2n. Hence transforming
from the coefficient to the point-value representation can be done with FFT in
Θ(n log n) time.

Going from the point-value to the coefficient representation is thus an in-
verse DFT and can be achieved by using FFT again. As a result, the polyno-
mial multiplication is decomposed into three steps, taking Θ(n log n), Θ(n), and
Θ(n log n) time respectively. A graphical illustration of this idea, taken from
[1], is shown in Fig. 1.

3



Figure 1: Efficient polynomial multiplication using FFT. Taken from CLRS.

References

[1] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2022.

4


