
with Jeff Wilson, PhD

GAME AI

Perception and Fairness

Fairness

Â Game players are easily frustrated with games that they don’t
perceive as being fair

Â Mario Kart with the handicapping via powerups is a classic
example

Â Many games have enemies that seem to be aware of more
than they should, especially in 3D games.

Â Two primary aspects to fairness:
Â Game Design/Rules
Â Agent Ability and Perception
Â Perception is arguably the most difficult to adjust

Perception Modeling

Â In robotics, perception is a fundamental aspect of AI solutions.
Â The robot needs to be aware of its environment
Â But in video games, the agent has access to all the

information it might need in the simulation, often in an already
discretized form.

Perception Modeling

Â But having access to all game state means that agents can be
more informed than the player might expect

Â To model agent perception accurately means holding
information back from the agent’s decision making

Â This “holding back” can become computationally expensive
and prohibitive in video game development

Perception

Â Simple agents might always
acknowledge the player and
immediately act

Â To avoid overwhelming the
player, enemy agents get
activated or spawned as the
player progresses in the
game

Player

Enemy

Trigger Zone

Perception

Â But players are frustrated if
enemy agents can detect
them if it is expected to be
impossible

Â Examples:
Â Player is very far away
Â Agent has eyes in the front of

their head and they are looking
away from player

!

Player

Enemy

Hoo Ha Ha!

Perception Problem

Â From a development perspective, it is easiest to just access
any simulation state you desire.

Â If the enemy agent needs to know where the player is then
you can simply access it

Â However, this does not reflect the limitations imposed on the
agent’s (expected) perceptual ability

Limited Sight Range

Â A simple to implement
perceptual limitation is a
sight radius.

Â If the player’s position is
beyond the sight radius, then
the enemy does not see the
player and maintains a
neutral behavior

Player

Enemy

Sight Radius

Limited Sight Cone/Angle

Â Further realism can be added
via a sight angle

Â Compare the absolute angle
of agent facing angle (or
head angle) and player
position with a perception
angle threshold

Player

Enemy

Sight Radius

Sight Angle

Occlusion

Â Player may be hidden by wall
or other object

Â Raycast is a simple test
Â Can add more raycasts more

realism
Â Render (projection and

rasterize with poly fill) to see
if color-keyed player is in
view

Player

Enemy

Rock or Something

Raycast
Hit

Attention

Â It may be desirable to model agent attention level
Â Consider a stealth game where the enemy knows that the

player is around but doesn’t know where
Â In this case, detection ability can be increased until the

aggression level reduces
Â Examples: Enemy can see the player from father away or from

a wider angle, hiding spots don’t work as well, etc.

Foveal and Peripheral Vision

Â Foveal (center vision) and Peripheral
Vision (side vision) can be modeled
with two cones/angles

Â This can be integrated with attention
modeling

Â Example:
Â The player is wearing camouflage and the

enemy is not in an alert state. If the player
is still, and is only even seen in the
peripheral angle then they aren’t detected Player

Enemy

Foveal
Peripheral

Shadows and Camouflage

Â For stealth games, the player often needs a place to hide that
may not involve full occlusion

Â For shadows, the environment can be discretized (e.g., grid,
voxel) and each cell can be tested as if the player is there to
see if it is directly illuminated by any static point light sources.
This is a preprocessing/baking step. Use the max illumination
found to store.

Â For camo, often zones are manually assigned by designers
(e.g., bushes, grass)

Sense Graph

Â Finite Element Model (FEM) of
game world

Â Represent game space as a graph
Â Improves scalability of game

because events that occur are
attenuated down to zero; only
agents within non-zero range
need to process

Â Senses are signals that are
passed between graph nodes

Â Smells can propagate and linger

Hearing

Â Outside of speech communication, human sense of hearing is
often used for the purpose of alerting an individual to some event
Â E.g., If you hear a twig snap in the woods you will quickly turn your head to

see what it was

Â Modeling hearing from actual game audio is overkill
Â Instead listen to game events that lead to audio (integrate with

sense graph)
Â Calculate detectability based on precomputed loudness and sound

type and distance from the user
Â Use 3D sound rolloff factors (near and far distances)
Â May also perform Fletcher Munson Curve analysis (pre-process)

Projectiles and Fairness

Â Aiming Error
Â Aiming Action
Â Reaction Time

CS 4455

16

Human-Like Error in Aim

Â Gaussian Distribution
can be used to
introduce error around
exact solution

Â Use Box-Muller or
Zigorat Algorithm

Â Can also rand minus
rand for a simple
random distribution with
central tendency

Â Cheat detection of aim-
bots?

Human-Like Aim Movement

Â Fitts’s Law
Â Time required to rapidly move to a target area is a function of

the ratio between the distance to the target and the width of
the target

Â Can consider pointing a weapon at a target

Â 𝑇 = 𝐿𝑜𝑔!(
!"
#
) – Note that there are various formulations

Â Perhaps simulate discrete refining aim movements with error
as part of a feedback loop; fit to Fitts’s predictions

Â Also, see GOMS

Human-Like Reaction Time

Â Around 0.2 s response time to visual stimulus (if expected)
Â A little less for auditory stimulus

Â Circular buffer to delay estimates
Â Extrapolate according to velocity for purpose of aiming
Â Possibly use Kalman Filter
Â Probably overkill, but might help avoid aim-bot detection

