
with Jeff Wilson, PhD

GAME AI

Fuzzy Logic



Non-Numeric Linguistic 
Expression
1. Cut two slices of bread medium thick.
2. Turn the heat on the griddle on high.
3. Grill the slices on one side until golden brown.
4. Turn the slices over and add a generous helping of cheese.
5. Replace and grill until the top of the cheese is slightly brown.
6. Remove, sprinkle on a small amount of black pepper, and eat.



Non-Numeric Linguistic 
Expression
Â Subjectivity
Â Vagueness
Â Flexible interpretation
Â Challenge to coordinate with conventional logic



Motivation

Â Fuzzy logic: truth degrees, vagueness, subjectivity
Â Consider: “20% chance of rain” vs “partly cloudy”
Â Probability as likelihood, ignorance, uncertainty

Â Linguistic: non-numeric expression of rules & facts (e.g., new or old)
Â Allows for use of vague human assessments in computing problems
Â E.g., Cautious vs Confident

Â FSM w/ 2 states – switching looks unnatural
Â Cautious (range), sneak slowly (range)
Â Confident, walk normally

Â Value?
Â Relatively popular in games industry
Â Largely dismissed in academic AI



Fuzzy Logic

Â Modeling of imprecise concepts
Â Modeling of imprecise dependencies
Â Superset of classical logic
Â Introduces concept of degree of 

membership (DOM)
Â Uses fuzzy sets and fuzzy rules
Â Not probability



Thermostat Example

Â How to adjust the thermostat?
Â How do I feel now?

Â Freezing, Cool, Warm, Hot
Â How much do I adjust the  temperature by?

Â Down a lot, down a little, keep same, up, some, 
up a lot

Â Inputs: 
Â Crisp values (e.g., 75F)

Â Outputs: 
Â Crisp values (turn temp down 5F)
Â Booleans, categories, nearly anything



Thermostat Rules

IF temperature IS very cold THEN fan_speed is stopped 
IF temperature IS cold THEN fan_speed is slow 
IF temperature IS warm THEN fan_speed is moderate 
IF temperature IS hot THEN fan_speed is high



Fuzzy Logic Use Cases

Â More direct way to represent expertise (linguistic form)
Â Potential for declarative authoring by non-programmers

Â Opportunity to capture expertise (e.g., consult an expert) but 
lack the resources to train (Neural Net, etc.)

Â Flexible behavior design paradigm
Â When behavior design efficiency is more important than 

optimization
Â Behaviors can act on multiple variables without imposing rigid 

structure to decision making 



Fuzzy Logic History

Â Proposal of Fuzzy Set Theory  Introduced in 1965 by Lotfi A.  
Zadeh (UC Berkeley)

Â Japanese were first to utilize for commercial applications in 
late 1970s-1980s (high-speed train, rice cookers)

Â Use of Fuzzy Logic controllers really picked up late 1980s
Â Research boom in ‘90s



Golfing Game Example

Â When putting: If the ball is far from the hole and the green is 
sloping gently downward from left to right, then hit the ball 
firmly and at an angle slightly to the left of the flag. 

Â When putting: If the ball is very close to the hole, and the 
green between the ball and hole is level, then hit the ball 
gently and directly at the hole. 

Â When driving from the tee: If the wind is of strong force and 
blowing right to left, and the hole is far away, then hit the 
ball hard and at an angle far to the right of the flag. 



Golfing Game Example

Â Close = the ball is between 0 meters and 2 meters from the 
hole. 

Â Medium = the ball is between 2 meters and 5 meters from the 
hole. 

Â Far = the ball is greater than 5 meters from the hole. 
Â Problem: What if the ball is 4.99 meters away?

Â Transition from medium to far is abrupt with significant impact on 
behavior



Golfing Game Example

When driving from the tee: If the wind is of strong force and blowing right to left, 
and the hole is far away, then hit the ball hard and at an angle far to the right of 
the flag. 

If(abs(wind) >= MIN_STRONG_WIND AND wind < 0 AND dist(ball.pos, hole.pos) >= 
MIN_FAR) THEN 

hitForce = lerp(MIN_STRONG_FORCE, MAX_STRONG_FORCE, 
inverseLerp(MIN_STRONG, MAX_STRONG, abs(wind)))

Angle = angle(ball.pos, hole.pos) + lerp(MIN_ANGLE, MAX_ANGLE, 
((inverseLerp(MIN_STRONG, MAX_STRONG, abs(wind)) + 
inverseLerp(MIN_FAR, MAX_FAR, dist(ball.pos, hole.pos))*0.5))



Boolean Logic

Â Predicates return true or false
Â IsArmed(agent), IsInjured(agent)

Â Set membership: one or the other



Fuzzy Sets

Â Degree of Membership (DOM)
Â Instead of predicates being true or false, there is a normalized 

value specifying degree of membership
Â Example: IsInjured(agent) == 0.7
Â The value is not a probability or a percentage, it is only the 

degree to which the the agent is a member of IsInjured



Fuzzy Weirdness

Â Some traits that one might expect to be mutually exclusive 
can simultaneously present non-zero degrees of membership

Â Example:
Â IsHealthy(agent) == DOM(0.3)
Â IsInjured(agent) == DOM(0.7)



Degree of Membership

Â When multiple DOMs are non-zero, it makes sense that DOM 
should sum to 1.0

Â However, a weighted average is often sufficient for good 
results



Fuzzy Rules

Fuzzification

Fuzzy Rules

Defuzzification

Crisp, discrete values

Crisp, discrete values



Fuzzy Rules

Fuzzification

Fuzzy Rules

Defuzzification

Crisp, discrete values

Crisp, discrete values

Fuzzy boundaries (partial  
membership) described with  

“Membership Functions”



Fuzzy Rules

Fuzzification

Fuzzy Rules

Defuzzification

Crisp, discrete values

Crisp, discrete values

IF antecedent THEN consequent  
(where antecedent has DOM,  

and consequent fires by degree)



Fuzzy Rules

Fuzzification

Fuzzy Rules

Defuzzification

Crisp, discrete values

Crisp, discrete valuesCombines consequents  
fired into a crisp value.



Fuzzy Inference

Â For each rule,
Â For each antecedent, calculate the degree of membership of the  

input data.
Â Calculate the rule’s inferred conclusion based upon the values in 

previous step

Â Combine all the inferred conclusions into a single conclusion  
(a fuzzy set)

Â For crisp values, the conclusion from 2 must be defuzzified



Fuzzy Rules

Â Relate the known membership of certain fuzzy sets to 
generate new DOM values for other (output) fuzzy sets
Â Must create rule for each possible combination of antecedent sets

Â E.g., “If I am close to the corner AND I am traveling fast, then I  
should brake”

Â m(should brake) = min(m(close to corner), m(traveling quickly))
Â Membership of should break with “close to corner” 0.6 and  

“traveling fast” 0.9?



Fuzzification

Â Fuzzification:
Game state à DOM  “Membership 
Function”

Â Triangular
Â Trapezoidal
Â S-Curve
Â Left/Right Shoulder
Â Singleton

Â Note: Vert. lines should sum to 1
Â De-fuzz:

DOM à Game state
Â Numeric Fuzzification:  

f(numeric) à DOM
F( health val ) àDOM( healthy )  
F( health val ) àDOM( hurt )



Example membership
functions

23



Fuzzification of Small Sets and 
Enumerated Types 
Â Store pre-determined  

membership values. E.g.  kung fu 
game

Â (fuzz. func. is a lookup table)
Â Boolean var

Â hasPwrflArtifact

Â Enum var
Â DOM of fearsmFighter from one of set of 

sashes
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Set Operations – AND/OR/NOT

Boolean logic: True, False
Fuzzy: DOM of a fuzzy set

Little rain (0.3) AND very cold (0.8)
Fuzzy Logic
m(A && B) = min(mA, mB)
m(A OR B) = max(mA, mB)

m(NOT A) = 1 – mA

Hedge: VERY = (mA)2

Hedge: FAIRLY = (mA)0.5

A B A && B A OR B

F F F F

F T F T

T F F T

T T T T



Visualize Fuzzy Logic

m(A && B) = min(mA, mB) m(A OR B) = max(mA, mB)



Alternate Fuzzy Logical Expressions

Â x AND y = x*y 
Â x OR y = 1-(1-x)*(1-y) = x+y-x*y

Â Derivation of x OR y:
x OR y = NOT( AND( NOT(x), NOT(y) ) ) 
x OR y = NOT( AND(1-x, 1-y) ) 
x OR y = NOT( (1-x)*(1-y) ) 
x OR y = 1-(1-x)*(1-y)

Still use:
m(NOT A) = 1 – mA



Defuzzification

Â Need to translate data back after applying whatever logic was  
needed

Â Multiple approaches
Â Mean of maximum
Â Centroid
Â Average of Maxima
Â …

Â Problem: Turn a set of membership values into a (typically) 
single number (crisp value)



Defuzzification

Fuzzy Set includes all 3

Note that it is possible for a DOM line to intersect membership function more than once 



Highest Membership
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Blend based on Membership

Â Use DOM as weights
Â 0.33 creep, 0.33 walk, 0.34 run
Â 0.33 * characteristic creep speed + 0.33 * characteristic walk speed + 

0.34 * characteristic run speed

Â Normalize values 
Â if not already guaranteed to sum to 1.0

Â Can use minimum values (Smallest of Maximum method or 
Left of Maximum, LM)



Center of Gravity

Â Crop membership function at
Â DOM value
Â Integrate each in turn to find center of 

gravity
Â Method often used, but is expensive
Â Blending works about as well and is 

cheap



Buckland’s Rocket Launcher 
Example
(distance = 200 and ammo status = 8)

Rule 1. IF Target_Far AND Ammo_Loads THEN Desirable  

Rule 2. IF Target_Far AND Ammo_Okay THEN Undesirable  

Rule 3. IF Target_Far AND Ammo_Low THEN Undesirable

Rule 4. IF Target_Medium AND Ammo_Loads THEN VeryDesirable

Rule 5. IF Target_Medium AND Ammo_Okay THEN VeryDesirable

Rule 6. IF Target_Medium AND Ammo_Low THEN Desirable

Rule 7. IF Target_Close AND Ammo_Loads THEN Undesirable  

Rule 8. IF Target_Close AND Ammo_Okay THEN Undesirable  

Rule 9. IF Target_Close AND Ammo_Low THEN Undesirable
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Buckland’s Rocket Launcher 
Example



Buckland’s Rocket Launcher 
Example



Fuzzy Decision Making

Â Use Fuzzy Logic to select actions/behaviors/states
Â Each action can be applied to varying degrees, rather than 

selected discretely
Â Allows blending of actions in gray areas where one action or 

another is not clear



Fuzzy Rules

Â Fuzzy logic can be applied to a decision-making framework 
that is similar to Rule Based Systems

Â There is no formal name for this and may be referred to as 
Fuzzy State Machines or simply Fuzzy Logic

Â Fuzzy State Machines is also used to describe another 
algorithm, so it is a bit confusing
Â (See Millington for Fuzzy State Machines similar to Finite State 

Machines but with fuzzy attributes)

Â We will simply refer to the concept as Fuzzy Rules



Fuzzy Rules

Â Decisions made on some number of crisp inputs
Â Each input is mapped to fuzzy states as previously presented
Â May require that sum of DOMs from overlapping membership 

functions sums to 1.0 (allows optimization)
Â Output states are fuzzy states representing agent actions
Â Fuzzy Rule Structure:

Â IF input-state-1 AND ... AND input-state-n THEN output-state 

Â Example:
Â IF chasing AND corner-entry AND going-fast THEN brake 
Â IF leading AND mid-corner AND going-slow THEN accelerate 



Fuzzy Rule Structure

Â Each clause in a rule is a state from a different crisp input
Â Clauses are combined with fuzzy AND
Â Common to require all fuzzy input state combinations to be 

represented
Â Each fuzzy output state will be the maximum observed from 

activated rules



Fuzzy Rules Example

Â Input DOM
Â Corner-entry = 0.1 
Â Corner-exit = 0.9 
Â Going-fast = 0.4 
Â Going-slow = 0.6 

Â Rules
Â IF corner-entry (0.1) AND going-fast (0.4) THEN brake (min(0.1, 0.4)=0.1)

IF corner-exit (0.9) AND going-fast (0.4) THEN acc. (min(0.9, 0.4)=0.4)
Â IF corner-entry (0.1) AND going-slow (0.6) THEN acc. (min(0.1, 0.6)=0.1)
Â IF corner-exit (0.9) AND going-slow (0.6) THEN acc. (min(0.9, 0.6)=0.6)



Fuzzy Rules

Â If the DOMs for fuzzy input states always sum to 1.0 for any 
given crisp value, then an optimization can be made:

Â Short circuit logic can be employed that recognizes when it is 
not possible to increase a fuzzy output state due to taking the 
Min() (Fuzzy AND) of fuzzy input states. 

Â This allows some rules to be abandoned before all fuzzy input 
state membership functions are evaluated



Fuzzy Rules Performance

Â 𝑂 𝑛 +𝑚 - for algorithm memory, where n is the number of 
input states and m is the number of output states 

Â Rules also need to be stored:
Â 𝑂 ∏!"#

$ 𝑛! - where nk number of states per variable and i is the 
number of input variables

Â For Time:
Â 𝑂 𝑖 ∏!"#

$ 𝑛!
Â Performance is a huge weakness!



Solution: Comb’s Method

Â Manage complexity of Fuzzy Rules by simplifying 
them

Â IF a-1 AND ... AND a-n THEN c 
Â Rewritten as:
Â IF a-1 THEN c 
Â ...
Â IF a-n THEN c 
Â Drastically reduces complexity (𝑂 𝑖𝑛 - time) but 

cannot represent all logic possibilities
Â Typically, Comb’s method is used from the start of 

design
Â In practice, Comb’s method can be quite capable 

because states can interact with one another via 
defuzzification stage

((p AND q) implies r) EQUIVALENT_TO 
((p implies r) OR (q implies r))



Fuzzy Logic Pros and Cons

• Pros
– Easy to understand
– Efficient way to represent linguistic and subjective attributes of the real  

world in computing
– Supports smooth transitions between behaviors
– Generally easier to create than methods involving training

• Cons
– Defining set membership functions can be difficult
– Debugging knowledge can be difficult
– Defuzzification step can have surprising subtleties


