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Review

In this final lesson, you will focus on putting everything you have learned up until now
together. In this course you have learned:

Localization, Tracking, Planning, Control, Probabilities, Filters, A*, Dynamic Programing,
and PID.

That is a lot of stuff! In addition to learning these concepts, you also wrote programs to
implement them. Now you are ready to take all these pieces and put them together to build
a true robotic self driving car.

You could use particles to localize your robot by matching momentary measurements with
a previously acquired map.

With similar information Junior could be localized in the DARPA Urban Challenge with
centimeter precision. A similar method is also used by the Google StreetView car — it is
one of its secret sauces. The robotic car relies heavily on a previously built map and the
type of localization method that you implemented to localize the robot and make it follow
known lanes.

Question 1 (Localization):

In this course, you have learned about Kalman filters, histogram filters (in the first unit) and
particle filters.

For this localization quiz, ask yourself the following questions about each of the filter types
and then check the corresponding box if the attribute applies, there may be none or more
than one.

e Are any of these filters multimodal in their distribution?
e Are any of these filters exponential in computational complexity relative to the
number of dimensions?



e Are any of these filters useful in the context of robotics?

QUIZ Multi-modal? Exponential? Useful?

Kalman

Histogram

Particle

Answer:

You learned that the Kalman filter is unimodal, whereas histogram and particle filters are
multimodal.

The Kalman filter was more efficient than the histogram and the particle filter, that both
require exponentially more units in the number of the dimensions in the worst case. And of
course, they all are very, very useful, in case you did not get this from the class!

QUIZ Multi-modal? Exponential? Useful?
Kalman YES
Histogram YES YES YES
Particle YES YES YES

Recall your planning concepts: breadth-first planning, A* planning and dynamic
programming. Each planning concept addresses slightly different use cases, and are being

used to plan the trajectory of the Google StreetView car and the DARPA Grand Challenge
cars. In fact, you implemented good number of those, and that is quite amazing!

Question 2 (Planning):
Check any or all of those boxes, if you think that the corresponding planner:

acts in a continuous space,
finds an optimal solution,
is a universal plan (that means the solution, once found, can be applied to arbitrary
states).

e has a solution that is local, which means given an approximate initial solution, it can
not really do anything more than locally refine the solution.



QuUIZ Continuous Optimal Universal Local

Breadth First

A*

Dynamic

Programming

Smoothing

Answer:

Smoothing was the only one that really worked in a continuous domain; everything else
was very discrete.

Breadth-first, A-star and DP all find the optimal solution. DP is the only one that is
universal. And smoothing was the only one that was local.

QuUIZ Continuous Optimal Universal Local
Breadth First YES
A-star YES
Dynamic YES YES
Programming
Smoothing YES YES

You also learned about control and implemented your first controller. Controllers are what
make things like the autonomous sliding parking experiment possible.

Optional Material: See Autonomous Sliding Parking on YouTube:

https://www.youtube.com/watch?v=gzI54rm9m1Q
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Question 3 (PID):

Your knowledge of the PID control includes the P term, the | term, and the D term.

Please check which of the following terms are associated the most with:

e avoiding overshoot

e minimizing error relative to the reference trajectory

e compensating drift

QuIZ

Avoiding overshoot

Minimizing error

Compensating drift

P

D

Answer:

The primary function of P is to minimize error, the D term avoids the overshoot, and

systematic drift and biases are best addressed by the | term.

QUIZ Avoiding overshoot Minimizing error Compensating drift
P YES
1 YES
D YES

Your Robot Car

We will now put it all together in a single piece of software. Although you will have some
help (because Sebastian knows you are a busy student) you should still be able to take all
the lessons that you learned and put their information together in a single system. Here is a
little bit of help with setting it all up.

The environment that is set up for you is very similar to what you have seen in the past
lessons. There is a class robot that has certain noise characteristics associated with it.
There is the familiar _ init  function, the position setting function set, and the
set noise function.



There are also two new checking functions: check collision that checks if you have a
collision with the world called grid, and a check goal function that checks if you have
reached a goal according to a certain distance, threshold.

The move function should be very familiar to you at this point; it applies noise to the motion
command. It is the same code that you originally wrote. The sense function measures the

(x, y) location similar to a GPS on a car, but with substantial measurement noise.

Corresponding to the sense function is a measurement probability function that you

might want to use in your filter, which evaluates the probability of a measurement relative to
the ground truth coordinates of the robot, using gaussians.

Armed with all this, here is the problem!
Given a grid:
# grid format:

# 0 = navigable space

# 1 occupied space

grid = [[0O, 1, O, O, O, 01,

(6, 1, 0, 1, 0, 0]] 5;

Put everything together and build a
robotic car. Use the bicycle model to
drive through the continuous free
space on something close to the
shortest path, all the way into the goal.

Below you can see a solution that

Sebastian implemented. The obstacles

are implemented as circles through the

center of the grid cells, which is not exactly
correct, but is good enough for this
implementation. You can see that the paths,
displayed here from multiple runs, are far from
optimal. This is because there is a control
noise and there is a measurement noise. In
the end they all make it safely through the free




space and into the corner where the goal state is.

Looking at the obstacles in detail, like in the image below, you can see that the spacing of
the circles is somewhat variable. Also, observe that there are little corners in some places,

either as an effect of a control noise or a measurement noise, or of somewhat deficient

implementation. You can also see the control setpoints as bigger green circles. These are

the smoothed points of the A* planner.

In the version that Sebastian has implemented for you, the controller does something very,
very different. It actually chooses as a control objective going straight to the goal, using the
atan2 function, and executes the action with a speed of 0.1 and then reports a collision
every time the robot hits something. If
you look at the output — the coordinates
and the orientation — you can see that f

there are still frequent collisions the
robot undergoes in its attempt to reach ) =
the goal. The robot does eventually 2 £ K
does reach its goal, but you can see ;
two big regions of collision before the g :
goal is finally reached. : <\ ! ' V4

Sebastian has prepared code for you
that is still a bit incomplete.

This code has a function called main,

which runs a path planner, A* a 1l ' _ - "0 g
smoother, and then a controller, as in ' '

run. In the controller, run, even the _

particle filter is implemented, but there i L 1 i 3 . s

is nothing new; it is the same code that

you have implemented. The code goes

through a loop, where cross-track error, CTE is computed, then applies the PD controller
(no | term there), and finally runs the particle filter, as before, to estimate where the robot is.

Question 4 (Segmented CTE):

For this quiz, implement the cross-track error function,
CTE. Use as an input the estimate of the robot’'s position
that you can get by running filter.get position().

Here is the difficult part. Your path is now a sequence of
linear pieces. When your robot drives along (red boxes), it
has a certain crosstrack error. However, as the robot state
projects beyond the end of a line segment, which is
represented by the position of the black box, you have to \ﬂ
change the corresponding line segment to be the next one.




In addition to calculating the assigned error relative to an arbitrary line segment, not just the
y-axis, you also have to detect when the robot steps beyond the end of a line segment and

switch over to the next one.

Suppose this is your line segment, and the path is given by the coordinates of the start

point P, and the end point P,. Both
points are (x,y) coordinates.
Suppose your robot's position is
something like the black box at
P(x,y), where it has its own (x,y)
estimate that comes from the
particle filter in your case, and has
its own orientation, theta 6 .

At this point both the cross-track
error and how far the robot has
progressed along the line segment
u, can be calculated using a dot
product. Specifically, you can call
the green vector(on next page) Ax
and Ay, as defined by Ax = x, - X,
and Ay =y, - y,. Refer to the black
vector from P, to P(x,y) - R,, R, =

G, o o
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x-X, and Ry =y - y,. Then u, which measures the robot’s progress along this segment, is

given by the dot product:

The denominator normalizes the vector length to 1. This is the dot product of the black

vector R and the green vector A.



_ R;Az +R,Ay
Azl 4+ Ay

If u is larger than 1, it means the robot has left the segment and has to move to the next
line segment. Finally, the cross-track error, the red line, is given by a similar (but not
identical) dot product of:

 RA.-R.A,
— TAZITAY

CTE

In this equation you have to multiply R, with Ax and R, with Ay. Note that we are now
multiplying a y term by an x term and we are doing subtraction rather than addition. The
normalizer is the same. Incorporate this equation into your code.

When you run your controller, you will see that the variable called index has been set up for
you:

index = 0 # index into the path

When u > 1, increment index to make sure it never goes beyond what is legal in the path
length. The cross-track error should be computed relative to the current index, and is, of
course, a signed error, using the exact dot product described earlier.

The last thing that you will be given is the path. You should use the path called spath,
which is given to the run function as one of the parameters. spath[index] is the path
segment at segment number index, where [0] stands for x coordinate, and [1] fory:

spath[index] [0] # x coordinate at index
spath[index] [1] # y coordinate at index
Please fill in the missing code.

When you run your controller, with the missing code included, you will get a valid, nice path
that mostly does not collide. Occasionally it does, because of randomness in the system,
but it should mostly be collision free. For this example, it will require around 130 robot
steps. A typical answer to this assignment will look like this random run:

[True, 0, 137]

True means that the robot actually found the goal, 0 means zero collisions, and 137 means
that it took 137 steps. It is possible to sometimes get collisions because the obstacles are

relatively large and the noise in the system makes it hard to navigate. Most of the time,
though, the robot should be able to get to the goal without difficulties if you implement this
piece of code correctly. A friendly warning from Sebastian: this takes a while.



Answer:

# some basic vector calculations

dx = spath[index+1][0] - spath[index][0]
dy = spath[index+1][1] - spath[index][1]
drx = estimate[0] - spath[index][0]
dry = estimate[l] - spath[index][1]

# u 1s the robot estimate projected into the path segment

u = (drx * dx + dry * dy)/(dx * dx + dy * dy)

#the cte is the estimate projected onto the normal of the path segment
cte = (dry * dx - drx * dy)/(dx * dx + dy * dy)

if u > 1:

index += 1

Question 5 (Fun with Parameters):

Take a moment to play with these model parameters:
weight data = 0.1
weight smooth = 0.2
p_gain = 2.0
d gain = 6.0

Change the parameters as you wish and try to find values that will produce fewer collisions

on average and that may allow the robot to reach the goal even faster. In the example the
best values are obtained by an approximate investigation without applying twiddle. You may
find applying twiddle particularly hard here because it might never return and you will have
to build in a time out somehow. But it is fun to play with these parameters and try to find a

better solution than the proposed one. You can use twiddle or whatever other method you
want. But don’t expect the correct answer for this question. This is a good opportunity to

play with these parameters and see what the effects are on the solution.

To get this question right you have to change the parameters (or leave unchanged if you
want) so that robot can reach the goal in less than 150 steps. Even if you got it, try to
change them further to decrease the number of steps to 125. Be careful running twiddle: it
might not converge in which case your program will be terminated by a timeout and your
result considered wrong.



SLAM

Learning more about SLAM was highly requested in emails and on the discussion forum,
so here it is!

SLAM is a method for mapping. It stands for Simultaneous Localization And Mapping,
which is all about building maps of the environment. Remember in the localization classes
that the map was assumed to be given. That's not always the case and it’s fascinating to
understand how a robot can make these maps.

In the pictures below you can see a 3D map of an abandoned underground coal mine in
Pittsburgh, Pennsylvania, near Carnegie Mellon University.

A number of different
methods  for  building
maps have been
developed over the past
ten years. What all of
these methods have in
common is that their
process is to build a
model of the environment
while also addressing the
fact that the robot itself introduces uncertainty when it moves.

In this example, when the loop is being closed, you can see how the mapping technology is
able to accommodate this and find the consistent map despite the fact that the robot drifted
along the way.

The key insight in building maps is
that the robot itself might lose track of
where it is by virtue of its motion
uncertainty. In the localization you can
address this issue by wusing an
existing map, but now you don't have
a map — you're building it!

This is when SLAM comes into play.
SLAM doesn't stand for slamming a
robot, it means simultaneous
localization and mapping.




This is a vast research field. In this unit you will learn the method Graph SLAM, which is by
far the easiest method to understand. With this method you can reduce the mapping
problem to a couple of intuitive additions to a big matrix and a vector.

Question 6 (Is Localization Necessary?):

When mapping the environment with a mobile robot, does uncertainty in robot motion force
us to also perform localization?

Answer:

And the answer is yes. In nearly all cases of mapping the robot uncertainty is in motion,
and that uncertainty might grow over time. It's necessary to address that, otherwise the
map looks very bad.

Here is an example. Suppose a robot drives in the corridor and in senses surrounding
walls. If this robot has a drift problem and because of uncertainty in its motion it believes
the environment to be different from what it actually is. On the image below the top
trajectory is the real one and the bottom is belief trajectory of a drifty robot.

This might be indistinguishable at a first glance, but if the robot ever comes back to the
same place, there is no opportunity to correct the map. So a good SLAM technique is able
to understand not just the fact that environment is uncertain but also the robot itself runs on
uncertain trajectory. That makes SLAM hard.

Question 7 (Graph SLAM):

Graph SLAM is one of many methods for SLAM and it is by far the easiest to explain.
Assume a robot with an initial location (x,= 0, y,= 0). Keep things simple by assuming
the robot has a perfect compass, so you don't have to consider heading direction. Now,
assume the robot moves to the right, namely in x direction, by 10. In a perfect world you
would know that its new location is (x, = %, + 10, y, = y,). But as you learned from
various Kalman filter lessons and others, the location is actually uncertain. Rather than
assuming the robot moved 10 units to the right exactly, you know that the actual location is
a Gaussian centered around (10, 0). You also know it is possible for the robot to be
somewhere else.

Recall the math for a Gaussian. Here is how it looks for the x variable: rather than writing x,
= x, + 10, this equation expresses a Gaussian that peaks when x, and x, + 10 are the
same:
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Subtracting one from the other and placing the result as a mean into a Gaussian, you get a
probability distribution that relates x; and x,. You can do the same for y. Since there is no

motion, it is just making y,and y,as close as possible. The product of these two
Gaussians is now a constraint. The likelihood of the position (x;, y;) has to be maximized
given that the initial position is ( x,=0, y,=0)
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Graph SLAM defines probabilities by using a sequence of such constraints. Consider a
robot that moves in some space where each location is characterized by a vector. Graph

SLAM collects the initial location and lots of relative constraints that relate each robot pose
to the previous robot pose — that are called relative robot motion constraints. These
constraints are like rubber bands. In expectation the rubber band will be exactly the motion
the robot sensed or that was commanded, but in reality it might have to bend a little bit to
make the map more consistent.

On the map you can find landmarks. A landmark is seen from the robot pose with some
relative measurement. All these measurements are also relative constraints, very much



like the ones from movement. Again they are captured by Gaussians and impose relative
measurement constraints. One such constraint is introduced every time the robot sees a
landmark. So, Graph SLAM collects those constraints (that are insanely easy to collect)
and relaxes the set of rubber bands to find the most likely configuration of the robot path
along with the location of landmarks. That is the mapping process.

Suppose you have 6 robot poses (so you have 5 motions) and 8 landmark measurements.
How many constraints do you have?

Answer:

The answer is 14. There is one initial location constraint, 5 motions (between 6 points) and
8 landmark constraints.

Optional material:

For deeper insight into Graph SLAM you can read this article -
http://robots.stanford.edu/papers/thrun.graphslam.pdf

by Sebastian Thrun and Michael Montemerlo, published in THE INTEFR
JOURNAL OF ROBOTICS RESEARCH / May—June 2006.

Question 8 (Implementing
Constraints):

| ) | Xe X, Xy Lo L,
To implement Graph SLAM, a matrix and a vector
are introduced. The matrix is quadratic and labelled % As
with all the poses and all the landmarks. We also L, ¥,
make the assumption that the landmarks are ¥, vy
distinguishable. L, Le
Every time you make an observation, for example L; L

between two poses, they become little additions
locally in the four elements of the matrix defined
over those poses. This is entered into matrix in two
ways:

1. The equation is changed so that both x terms are grouped together and the term
corresponding to the source pose, has positive sign: x, - x, = -5. Then, +1 and -1
coefficients for x, and x, respectively are added to the matrix which initially contains all
zeros. The -5 constraint is added

to the corresponding element in

the vector.


http://www.google.com/url?q=http%3A%2F%2Frobots.stanford.edu%2Fpapers%2Fthrun.graphslam.pdf&sa=D&sntz=1&usg=AFQjCNHMuazqmh6inUV80bds0GPbBJBz_w

2. You do the same for the equation with positive sign for the destination pose:
X, = Xy = 9.

Put differently, the motion constraint that relates x,and x, by the motion of 5 has modified
the matrix incrementally, adding values for all elements that correspond to x,and x,;. The

constraint is written twice, and in both cases you should verify that the diagonal elements
are positive and the corresponding off-diagonal elements in the same row are negative.

Suppose the robot goes from x; to x,and the motion is -4; it moves in the opposite
direction. What would be the new values in the matrix and vector?

Hint: this motion only affects values that occur in the submatrix formed by x;and x, in

Omega and the corresponding entries in Xi. Also, remember that you are to add up the
values.

Answer:
First, retransform the equations exactly the way it was done in the example:

X [[20[7]x, = 4 and x,[?1[?][?]x; = [?1[?][?]4. Add 1 to the (x;,x;) matrix element and -1 to
the (x;,x,), -1 to the (x,,x,) and +1 again to the (x,,x,).

Question 9 (Adding Landmarks):
Suppose at x, the robot sees
landmark Lj,at a distance of 9.

This means there is a relative
constraint between x,and L,.
The matrix elements for such
constraints do not form a
submatrix; instead they are
spread apart. Modify these values




in the matrix and vector to indicate that landmark's L, position is 9 greater than x, .

Answer:

Transforming the equations exactly as before, you can obtain the following equations:

X [?12007] Lo =[?1[71[719 and L, [?][?][?] x,=9. Adding +1 and -1 to the diagonal and off
diagonal matrix elements respectively and adding -9 and +9 to x, and L, vector elements
gives you the correct result.
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Question 10 (SLAM Quiz):

This quiz is all about showing what you learned about Graph SLAM so far.
Please check all the answers that apply to the Graph SLAM:

e All about local constraints
e |t requires multiplications
e It requires additions

e None of the above

Answer:

The right answers are the first and third boxes. Graph SLAM is indeed all about local
constraints: you can see that because every motion ties together two locations, and every

measurement ties together a location with a landmark. These constraints are represented

as additions to the appropriate elements of the matrix and vector that are part of the

algorithm. Multiplication is the wrong option here, the algorithm is all about addition! It's that
simple!




Question 11 (Matrix Modification):

So far you have learned how to incorporate motion and measurement constraints to the
Graph SLAM matrix and vector. Now there is one more thing to consider: the initial pose.
How can you account for that constraint in the Graph SLAM?

Suppose your initial pose in a one-dimensional world is x, =0 . The figure below shows the

procedure for including that in the Graph SLAM matrix and vector. You simply add 1 to the
matrix element corresponding to x, and add the initial pose value to the corresponding
vector element.

For this quiz, consider a robot which moves around. The robot sees the same landmark L
when he is at x, and x,, but he is not able to see it from x,. This is shown in the figure
below. Go ahead and checkmark the fields that are modified in the matrix and vector
without putting actual numbers in. Remember: the remaining fields will not be modified, so
they will be zero.
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Answer:

And the answer is given by the blue dots in the figure below! Note that almost every
element of the matrix and vector are modified for this run. The only fields which are zero
(marked in red) correspond to the movement constraint between x,x, and and the

measurement constraint between x; and L, as indicated in the red arrows below.
Here is a list of the fields each constraint modifies:
Initial pose: matrix[0][0], wvector[0]

Movement Xo = Xp ¢ matrix[0][0], matrix[0][1], matrix[1][07,

matrix[1][1l], wvector[0], vector[l]

Movement X — X, : matrix[1][1], matrix[1][2], matrix[2][1],

matrix[2][2], vector[l], vector[2]



Measurement x, — L : matrix[0][0], matrix[0][3], matrix[3][0],

matrix[3][3], vector[0], wvector[3]

Measurement X,— L : matrix[2][2], matrix[2][3], matrix[3][2],

matrix[3][3], vector[2], vector[3]

Note that matrix[0][2], matrix[2][0], matrix[1][3] and matrix[3][1] are not in this list.

X, X¥. L . L Awd rMARK

What this means is that there is no direct constraint between x,and x,, since there is no

direct motion information between them, as well as no direct constraint between x,and L,

since there is no measurement information between x,and L.

Question 12 (Untouched Fields):

For this quiz you are presented the same situation as before, except that this time the robot

sees two landmarks. Landmark L,is seen from positions x,and x,, while landmark L, is
seen from positions x, and x,. How many of the 30 fields are not modified this time?

Xo Xy Xo Lo L, - L
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Answer:



And the answer is... 6?7 No, the answer is 8, but Sebastian initially made a mistake. So if
you got this answer right, congratulations! It can be somewhat confusing, as you will see
below.

To answer this question, you need to take note of the constraints that are not present in the
sequence. In his initial answer, Sebastian accounted for the direct motion constraint
between x,and x,, which is not observed. He also considered the measurement

constraints corresponding to the landmark L,, which is not seen at x,, and the landmark
Ly, which is not seen at x, .

These three constraints are marked in green in the figure above. Each constraint is
counted twice: the matrix element for (x,,L,) is always modified at the same time as the

matrix element for (L, , x,). Due to that, the Graph SLAM matrix is always symmetric.

Sebastian then moves on to check which fields are modified by each constraint presented,
to verify his answer. The figure below summarizes this verification, marking with different
colors the elements which are modified by each constraint. In proceeding this way, he
noticed his mistake: there are in fact 8 fields which are not modified in this sequence!

o Xi X L L Color code
& Move x0 to x1
Move %1 to x2
f‘ Meazure LO from x0
[¥ Measure L and L1 from x1
Le El
L ]

koo HANY OF THE 3o
ARE NevER TOUCHED 2 b2 E

What happened is that he disregarded the fact that there is no relative measurement
between the two landmarks, as marked in blue in the figure below. You could say that,
since landmarks can’t see, there is

no direct link between them. Put 2% X Lo b L, 2
differently, the small submatrix X% %\\’7/\/
v/

formed by the matrix elements X, /]
corresponding to L,and L, will

by
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always be diagonal using this L' %, x
approach. The answer is, therefore, “1I\: ﬁ -
that there are actually 8 fields that are

never touched. hoo WANY DF THE 3o Lt L f
ARE NEVER TOUCHED 7 -




Question 13 (Omega and Xi):

From now on, define Omega as the Graph SLAM
matrix and Xi (&) as the Graph SLAM vector. You

can use the Omega and Xi matrices that you have
been building to easily calculate the resulting mu
vector, which will contain the estimated robot
poses (this is the localization part of SLAM) and
the estimated location of the landmarks (which is
the mapping).

To do this calculation, you only need to invert the
Omega matrix, which you can do in the matrix
class with the inverse () function, and multiply
this with the Xi vector. The output will be the mu
vector! This calculation is shown graphically in the
figure to the right.

For this assignment, you have to build
2. i| yl-

the Omega matrix, the Xi vector using A

the initial position, movel and Xo '3

move2 values provided. You should % 32 v

then use the formula above to X

calculate and return mu. The figure _3

below shows an example where X - ...3
initial position=-3, movel=5 ° 2
and move2=3. The corresponding mu Xo ¥ " S

vector is shown in blue.

Answer:

The matrices you have to build are the following:
Omega = [[2,-1,0],[-1,2,-1],[0,-1,1]]

Xi = [[initial_pos-move1],[move1-move2],[moveZ2]]

You should have considered these constraints in order to get the right values: initial_pos at
X, movel from x, to x;, and move2 from x, to x,. You can also do it incrementally:



Omega = [[1,0,0],(0,0,0],[0,0,0]]

Xi = [[initial pos], [0], [0]]
Omega += [[1,-1,0],([-1,1,0],10,0,07]
Xi += [[-movell, [movell, [0]]
Omega += [[0,0,0],([0,1,-11,[0,-1,11]
Xi += [[0], [-move2], [move2]]

To calculate mu, just apply the formula directly to Omega and Xi:
mu = Omega.inverse () *Xi

return mu

Question 14 (Landmark Position):

In this quiz, the robot starts at an initial position of -3, where it senses a landmark a
distance 10 away. It then moves by 5 and measures the landmark to be 5 away. Finally, it
moves by 3 and measures a landmark to be 2 away. What is the robot’s best guess as to

the position of the landmark? Assume a one-dimensional world in this example.

Answer:

And the answer is 7. You can check that result directly because there is no motion or
measurement uncertainty. In the first position you might be tempted to say that there are
actually two possibilities for a landmark that is 10 units distant from x,= -3, namely -13 and

7. However, as you move to x; and x,, the only option that is consistent with subsequent
measurements is 7.
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The equations used to reach this conclusion are shown in the table below. They are the
same as the equations encoded in Omega and Xi. If you assume a fixed coordinate x, for

the landmark, the only value that works for all equations below is x, =7.



To=—o r)=xg+movel =—3+5=2| zy =g} moveld =12+43=5

do=|T)—2|=10 dy =T~ 1 =5 dy =| T Ta| =2

Question 15 (Expand):

Now you will expand your routine to accommodate the landmark. Specifically, you will use
a function that has been provided for you called expand. For example, you can call
Omega . expand to convert a 3x3 matrix to a 4x4 matrix which includes the landmark itself.

Answer:

First use the expand command to increase the dimensions of Omega and Xi
Omega = Omega.expand(4, 4, [0,1,2], [0,1,2])
Xi = Xi.expand(4, 1, [0, 1, 2], [0O])

Now add in the measurement constraints for each of the 3 posts and subtract —Z0, -Z1 and
-Z2 from

the corresponding Xi

Omega += matrix(([(1., 0., 0., -1.1,(0., O., O., O.1,[0., O., O.,
O']I[_ 1-/ O'I O-/ l-]})

Xi += matrix([[-20], [O0.], [0.], [Z0]])

Omega += matrix¢(([O., 0., O0., O0.1,(0., 1., 0., -1.1,[0., O., O.,
O']I[O'!_l'l O-r 1.11)

Xi += matrix([[0.]1, [-21], [0.], [2111)

Omega += matrix([(ro., o., 0., 0.1,10., 0., 0., 0.1,[0., 0., 1.,
-1.1,10.,0., -1., 1.11)

Xi += matrix([[0.], [0.]1, [-Z2], [Z2]])

Question 16 (Introducing Noise):

Consider the robot motion again. Say you change the last measurement from 2 to 1. What
is the effect on x,? What is the effect on x,? Hint: Try it out in your code!
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Answer:

Prior to the change, the result was [-3, 2, 5, 7]. After the change, you get [-3, 2.125, 5.5,
6.875]. What does this mean?

The initial position doesn’t change because the only information you have about the
absolute coordinate’s location is the initial position anchor of -3. None of the relative rubber
bands change the fact that this coordinate is -3. The relative rubber bands affect the other
two, but not the initial position.

You can understand the effect on x,by thinking about it in terms of the rubber band. By

changing the strength of the rubber band to 1, you make it tighter and expect the landmark
and the position to move closer together.

So this is a case where the rubber bands don’t add up and Graph SLAM really shines. Your
method computes Q-'&, which finds the best solution to the relaxation of the rubber bands.

Question 17 (Confident Measurements): 0

Here is a glimpse into why this works:

Suppose you have two robot positions and . The second I::‘; @
position is 10 to the right, with some amount of Gaussian )‘7
noise. Xb l

The uncertainty looks like:




There is a constant, an exponential, and an expression that will be minimized when
(x; —xo)is 10, though it may deviate from exactly 10.. The Gaussian is maximum when this

equation is fulfilled.

Now model a second motion, with an even bigger gaussian relative to the first one.

0 S

X, ) '\?' -V;,

The constraint looks very similar:

l Lo(x% "x"gz
= T e

The total probability is the product of the two. If you want to maximize the product, here are
a few tricks. The constant has no bearing on the where the maximum occurs, so you can
drop it. You can also drop the exponential if you turn the product into an addition. And now
you can also drop the -1/2 inside what was the exponential.

You end up with an equation likex,/c—x,/c=10/c . The 1/c term represents your
confidence. For a small othe 1/c term becomes large, which means you are more
confident.

For this quiz, modify the code so the last measurement has a really high confidence with a
factor of 5. You should get [-3, 2.179, 5.714, 6.821] as the answer. You see in this result,
the difference between the last point and the landmark are very close to the measurement
difference of 1.0 because you have a relatively high confidence compared to the other
measurements and motions.

Answer:

In the Omega and Xi for the second position you simply replace all the 1s with 5.

Omega += matrix([[(0., 0., 0., 0.],[(0., 0., 0., O0.1,[0., O.,
5., -5.1,100., 0., -5., 5.11)

Xi 4= matrix([[0.], [0.], [-Z2*5], [Z2*5]1])



Question 18 (Implementing SLAM):

Every time there’s a constraint (initial position, motion or measurement) take it and add it to
Omega and Xi. Also, multiply by a strength factor 1/c representing your confidence. Simply

calculate p = Q'eand the result is the path and the map. Amazing!

In this quiz, you have a generalized environment with the following parameters:

num_landmarks = 5 # number of landmarks

N = 20 # time steps

world size = 100.0 # size of world

measurement range = 50.0 # range at which you can sense Landmarks
motion noise = 2.0 # noise in robot motion

measurement noise = 2.0 # noise in the measurements

distance = 20.0 # distance by which robot (intends to) move

# each iteratation

make data is a function which, given your environmental parameters, returns a
sequence of motions and a sequence of measurements.

You will write the function slam which takes in this data and some environmental
parameters and returns a sequence of the robot path and estimated landmark positions.
Note that there is an initial constraint which places the robot at [50., 50.] the center of the
robot world.

Answer:

Here is Sebastian’s solution!

You take all the input parameters, and you set the dimension of the matrix Omega and the
vector Xi. The dimension is the length of the path plus the number of landmarks times two,
because you are modelling x and y for each of those, in the same data structure. You then
create a matrix for Omega and a vector for Xi, give it appropriate dimensions, and
subsequently you introduce a constraint that the initial positions have to be world size
/2.0 with a strength value of 1.0. That tells that this has no bearing to the final solution,
because it's the only absolute constraint. But you see that it's 1 added in the main diagonal,
1 for x and 1 for y and then the same for Xi.

#set the dimension of the filter

dim = 2* (N + num landmarks)



#make the constraint information matrix and vector

Omega = matrix()

Omega.zero (dim, dim)

Omega.value[0] [0] = 1.0

Il
i
o

Omega.value[1l] [1]

Xi = matrix ()

Xi.zero(dim, 1)

Xi.value([0][0]

world size / 2
Xi.value[1l][0] = world size / 2
It is important to understand how the data structures are set up.

. 5, L. L
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Your positions are marked X )y
with S, and landmarks L. ‘g. i [ ’l__l F
---—1"'

each of these have a x / —i‘ —+
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component and a S j_-
y

component. In doing this you

are taking this matrix and — |'.-+ f
setting it up not by a matrix of 3 ._t.,- i
path length plus the number [ = |- 3 _‘\—‘ -|t

of landmarks, but each of . "IL +
those becomes a 2 x 2 ' an

matrix, where you explicitly

retain the x and y value. So the dimension there is 2 * N (path length) + number of

landmarks, and the 2 is the result of modelling xy, xy etc. That is really important for this
solution.

f—

You might have chosen a different one, you might have said - “I will build one matrix for x
and one matrix for y, and then each of those just become a single value,” which is closer to

what you learned in the class. I’s fine in this case. In general it has disadvantages, in that it
can not correlate x and y, so for real robot that has real rotations that solution does not
work, and Sebastian’s example is better. But for this specific example separate matrices

would work just fine.

Full solution code:
def slam(data, N, num landmarks, motion noise, measurement noise):

#set the dimension of the filter



dim =

#make

Omega

Omega.

Omega.

Omega.

Xi =

2 * (N + num_landmarks)

the constraint information matrix and vector
= matrix ()

zero (dim, dim)

value[0][0]

Il
i
o

value[1l][1] = 1.0

matrix ()

Xi.zero(dim, 1)

Xi.value[0][0] = world size / 2

Xi.value[1l][0]

for k

world size / 2
in range(len(data)) :

#n is the index of the robots pose in the matrix/vector

n==%kx*2
measurement = datal[k][0]
motion = datalk][1]

# integrate measurements
for i in range(len(measurement)) :

#m is the index of the landmark coordinate in the

#matrix/vector

m= 2 * (N + measurement[1][0])

# update the information matrix according
measurement

for b in range(2):

Omega.value[n+b] [ntb] += 1.0 / measurement noise

Omega.value[m+b] [m+b] += 1.0 / measurement noise

to

Omega.value[n+b] [m+b] += -1.0 / measurement noise
Omega.value[m+b] [ntb] += -1.0 / measurement noise
Xi.value[ n + b ][ 0 ] += -measurement[i] [1+b] /



measurement noise
Xi.value[m+b] [0] += measurement[i][l+b] /
measurement noise
# update the information matrix according to motion
for b in range(4):
Omega.value[n+b] [n+b] += 1.0 / motion noise
for b in range(2):
Omega.value[n+b] [n+b+2] += -1.0 / motion noise
Omega.value[n+b+2] [n+b ] += -1.0 / motion noise
Xi.value[n+b][0] += -motion[b] / motion noise
Xi.value[n+b+2][0] += motion[b] / motion noise
mu = Omega.inverse () * Xi

return mu # Make sure you return mu for grading!

Congratulations

Congratulations, you’'ve made it very far! You've learned a lot about SLAM. Put the positions
and the map into a matrix Qand vector . Between poses and measurements, make

some simple additions to your matrix and vector and then you can solve for the path and
the map at the same time using p=Q "¢&.

This concludes all of the new material for this course. Even though you haven’t done the
final exam yet, congratulations for getting this far! The fact that you got this far means that
you are a very amazing student because you put in a lot of work for this class. You have
learned a lot and you should feel empowered to program robots better than before.

In this class, you studied the very basic set of methods that every roboticist should know
for programming any robot intelligently. All of those robots have tracking problems, state
estimation problems, planning problems and control problems — be it a surgical robot, be it
a robot maid or intelligent future household robot or even a flying robot such as
autonomous plane.

Thank you for being here!



