Artificial Intelligence for Robotics

Lesson 2: Kalman Filters
UDACITY

Introduction

Stanford's most recent self-driving car, Junior, is equipped with laser range finders that take
distance scans ten times per second — about a million data points. The major function of
collecting all of this data is to locate other cars. Data from the range finders provides key input
for the Kalman filters, which is the topic of unit two!

Self-Driving
Cars

Knowing how to detect other

cars will keep our self-driving

car from running into other éTAUFDIZD
cars. We need to know not

just where other cars are - (
as in the localization case - —

but also, how fast they are o -
moving in order to avoid ;

collisions.

Tracking

The Kalman filter is a popular technique for
estimating the state of a system. Kalman filters TR ACKinG
estimate a continuous state and gives a

uni-modal distribution.
The Monte Carlo Localization method is the

method you learned in the first unit, though we

did not call it by that name at the time. kALﬂAh’) FLTER Hm{_rﬂgcitekz‘ﬂud
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A car (the large rectangle) senses an object in space (*) at times {=0, t=1, t=2, t=3.Where
would you assume the object would be at t=4? Check one of the three boxes.

n D %
+ 2
4 4=)

Solution:

p ¥ %
+ 2
A4 4=

.

The velocity is changing according to a vector (red arrows). Assuming there is no drastic
change in velocity, you can expect =4 to
be along the same vector line.
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o ‘\“\L'U In this lesson we will learn to write a
piece of software that enables you take
points, even if they are uncertain, like in
this example, and estimate where future
locations might be. You will also be able
to identify the velocity of the object in
motion. The Google self-driving car uses
methods like these to understand where
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the traffic is based on laser and radar data.

Gaussians

A histogram divides continuous space into discrete regions. It is a way of approximating a
continuous distribution.
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In Kalman filters the distribution is given in what is called a Gaussian, which is a continuous
function over the space of locations. The area underneath the Gaussian adds up to one.

If we call the space (x-axis), x, then the Gaussian is characterized by two parameters - the
mean (greek letter mu, p ), and the width of the Gaussian, called the variance (often written as
a quadratic variable o°.

Any Gaussian in a one-dimensional parameter space, is characterized by (u,0%). Our task
when using Kalman filter is to maintain a y and a o2, that serves as our best estimate of the
location of the objects we are trying to find.

Copyright © 2014 Udacity, Inc. All Rights Reserved.



2

The exact formula is an exponential of a quadratic function:
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Question 1 (Gaussian Intro):

Check which functions are Gaussians:
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Answer: Gaussian Intro

There are three functions that are
Guassians. The signature traits of
Gaussians illustrated by these three
functions are symmetry on both sides with
a single peak. The single peak indicates
that the function is uni-modal.

What is this word, "unimodal?" Uni means
one. Modal refers to the mode of the
distribution. If you think back to beginning
probability, you may remember learning
about the mean, median, and mode of a
set of data. The mode is the number that
shows up most frequently. Stated in the
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language of probability, it is the most probable value, which shows up as a peak on a
probability graph. This is why a unimodal distribution is one with only one peak, while a

multimodal distribution has many peaks.

Question 2 (Variance Comparison):

Check the box to accurately describe the co-variance of the Gaussians.
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Answer: Variance Comparison

wide spread = large covariance; small
spread = small covariance

Note that the terms "variance" and
"covariance" are being used more-or-less
interchangeably here. For now, you can
treat them as meaning the same thing.

Covariance is a measure of uncertainty.
The larger 2, the more uncertain we are
about the actual state.
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Question 3 (Preferred Gaussian):

Which Gaussian would we prefer to track a self-driving car?
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Answer: Preferred Gaussian

(e T> PREFER

The third is most certain, making the chance

of hitting another car smaller 2 l/_\

[0 G

Finding the Peak of a Gaussian

Question 4 (Evaluate Gaussian):

Calculate the value of x, given the values (you will need a calculator)

M=10
0’=4
x=8

Answer: Evaluate Gaussian
For these values:
10

2= ¢
8

Q=
I

x
1

Jx) ="

J) = exp [ 3 &2

f) =g ep [ 35 107

o =g=ep[ 35
J(x) == exp [-0.5]
£(x) =0.19947 % 0.60653

f(x)=0.120985
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Programming a Gaussian

Using the values above and starting with the source code below, how would you complete the
program so that you return an output of 0.12 — the peak of the Gaussian:

from math import *
def f(mu, sigma2, x):

return #complete this line so that it returns the Gaussian function, given the arguments
print f(10.,4.,8.)

Solution:
from math import *
def f(mu, sigma2, x):
#use the formula as we did manually above

return 1/sqrt(2. * pi * sigma2) * exp(-.5 * (x - mu) ** 2 / sigma2)

print f(10., 4., 8.)

Question 5 (Maximize Gaussian):

How do you modify x, which is 8, to get the maximum return value for the function f?

Answer: Maximize Gaussian

The answer is essentially the same answer as mu, so that we get the peak of the Gaussian.
So set x to the same value as mu, 10. From the graphs of the Gaussians we have seen so
far, we can see that the peak always occurs at the mean. This is why we set x= when we
want to maximize.

from math import *

def f(mu, sigma2, x):
return 1/sqrt(2. *pi*sigma2) * exp(-.5 * (x-mu) ** 2 / sigma2)

print (10., 4., 10.)

o 0.199471140201
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Measuring Motion

The Kalman Filter represents all Kﬂl MCy f: l o

distributions of the Gaussians and

iterates two things: m
hos

1. Measurement updates [ ( h\O
2. Motion updates meeyur et
————-.—_-—

. 1

Question 6 (Measurement Motion @ ]‘ _
1): K Conolohos ?NJ"“(’
Each of the two steps, measurement or motion, mmeuMﬁ'i(' (o) ©
requires either a convolution or a product.

o o]

Do you remember which requires which? Check MDI‘IOD]
the corresponding box:

Answer: Measurement
Motion-1

Quiz Convplohios ?“’d"d'

Remember from Unit one, that when we

made a measurement we multiplied our MWU&MQ;“- O X
beliefs by a certain factor (which we called
pHit and pMiss earlier). When we made a o o

motion we performed a convolution (which Mol‘\ol/j
was essentially an  addition  of

probabilities). If you need a refresher,

please return to unit one.
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Question 7 (Measurement Motion

2): Quiz Bl Tohl Prbebiliy
Check whether Bayes Rule or Total Probability (_ o
apply to measurements or motions: Measuemey 9

wolioy it

Answer: Measurement Motion-2

In Unit 1 we used Bayes' Rule to calculate the .
posterior distribution given a measurement Z. GURS
We wrote this as P(X|Z). Total probability was

used in motion when we calculated the m&a‘sUt‘CW&‘&" ) -4 o
probability of being in each cell after the move
by tracking the probabilities from before the
move. Please look at Unit One if you need a
refresher.

Kalman Filters

When using Kalman filters, the measurement cycle is usually referred to as a measurement
update, while the motion cycle is usually called prediction. The measurement update will use
Bayes Rule - a product, multiplication. The prediction update will use total probability - a
convolution, an addition.

We can talk about the these two cycles using Gaussians.

Suppose you are localizing another vehicle and you have a prior distribution with a mean of
mu that looks like:

And then we get a measurement
that tells us something about the
localization of the vehicle, in blue,
with a mean nu.




poy

Question 8 (Shifting the Mean):

Where would the new mean of a subsequent
Gaussian be? Check the correct location.

!

In between the two means, the mean of the prior and the mean of the measurement. It is
slightly further on the measurement side because the measurement was more certain as to
where the vehicle is, than the prior. The more certain we are, the more we pull the mean in
the direction of the certain answer

Answer: Shifting the Mean

Question 9 (Predicting the Peak):

Where is the correct posterior after multiplying
the two Gaussians? This question is hard, take

your chances. L)E\’E\E 1S THRE NEW nEAU

-
1]
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Answer: Predicting
the Peak

The resulting Gaussian is more
certain than the two component
Gaussians. That is, the
covariance is smaller than
either of the two covariances in
isolation. Intuitively speaking,
this is the case because we
can actually gain information
from the two Gaussians.

This result may not seem very
intuitive at first. It helps to think of
these two measurements being
made simultaneously (perhaps one
is from a laser and the other from a
radar sensor). Each of these
sensors may make a mistake, but
by using both sensors we MUST
gain more certainty about our
position than we would by using

one alone (otherwise why would we '- | L&\‘E@ '-\5 THE me ngw

even use a second sensor?). This
means the resulting peak must be
higher.

Proof

Warning: this proof is heavy on math! If you really want to understand it, you should work
through it on your own, consulting this document when you get stuck.

Step 1: Multiply the Gaussians (remember that measurement always means multiplication)

w2 4 (x—v)?
exp(—3 [E5+ L0 ))
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For our sanity, let's ignore the normalization pieces in front of the exponential. They will not
affect the piece of this calculation that we are interested in.

When we make this multiplication, we are left with something that is proportional to:
N2 Y
exp(— 5[5+ £55))

Note that the expression in brackets is quadratic. Let's solve this expression to find the new
mean and covariance.

If we want to find the mean, we want to maximize the entire function (because the peak
always occurs at the mean). We do this by minimizing the quadratic expression, which is
done by setting the first derivative equal to zero. If you've never taken calculus, take this step
for a given, and continue with the proof. When we take the first derivative, we obtain:

d )’ |y
dx =2 o2 + 2

We set this equal to zero and solve for x. We find:

_ wve?
r*+o?

This is a beautiful result! Let's talk about it.

First, don't pay too much attention to the denominator. The interesting stuff is going on
upstairs. What we have in the numerator is a weighted sum, but notice that the mean of the
first Gaussian is weighted by variance of the second Gaussian. Does this make sense?

It does! If the second distribution has a huge variance, then it isn't a very great measurement
and we'd rather emphasize the first distribution. This is exactly what our equation says.

Okay, what about the variance? Let's take advantage of the fact that the second derivative of
the quadratic expression in the exponent will be equal to two divided by the variance. Applying
this, we find the following:

242
d? o2 2

_2
(52

where 02 is our new variance. When we solve this for 0%, we find:

Note that this variance will always be smaller than either of our initial variances.
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Equal Variances

Suppose we multiply  two
Gaussians, as in Bayes' Rule, a
prior y and a probability 2, and the
measurement has a mean of v (nu)
and a covariance of r?, so that the
new mean, J' is the weighted sum
of the old means, where p is
weighted by r?, v is weighted by o2
and normalized by the sum of the
weighting factors.

The new variance term after the

update is given by the following equation:

1 — 1 1
il R

Pending fix for MoinsMoins markup syntax to work nice with MathJax

We can determine the location of the new mean on the graph because we know that:

1. The prior Gaussian has a much higher uncertainty, a longer, lower slope, therefore ¢?

is larger

2. This means the v is weighted much larger than the p
3. So the mean will be closer to the v than the y (blue tick)

Copyright © 2014 Udacity, Inc. All Rights Reserved.


https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2FMoinsMoins&sa=D&sntz=1&usg=AFQjCNGLub1Da9luP_7Knvw2-EIzV7Cqhg
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2FMathJax&sa=D&sntz=1&usg=AFQjCNFEpPS9fdT5BzXJVKQx2S9ISYYXvA
https://www.google.com/url?q=https%3A%2F%2Fwww.udacity.com%2Fwiki%2FMathJax&sa=D&sntz=1&usg=AFQjCNFEpPS9fdT5BzXJVKQx2S9ISYYXvA

Question 10 (Parameter Update):

Using the following Gaussian's and the given equations, compute the new mean and the new
o? after the update.

" 1 2
M=l

=3
u? =10
v=12
o’=4
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Answer: Parameter Update

u=11
o‘=2

Unequal Variances

Question 11 (Parameter Update 2):

Once again, using the following Gaussian's and the given equations, compute the new mean
and the new o? after the update.

=[]
=3

u? =10

v=13

c>=38

r2=2
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Answer: Parameter Update 2

Question 12 (Separated Gaussians):

Suppose we have a prior and a measurement probability really far away from each other, and
both have the same covariance. Where would the new mean be?

Quiz

NN

0""-—
o
o —
o

Answer: Separated Gaussians

QuIz
U\‘ ;1 | /\5
6 ¥ © )

The new mean is in the middle because the covariances are the same.
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Question 13 (Separated Gaussians 2):

What will the Gaussian look like?

QUi MA\HA

C MECK ©VE BoYX

Answer: Separated Gaussians 2

The most peaky Gaussian, because the new ¢? is obtained independent of the means. Again,
this seems strange, but when we have two sources of information we expect our knowledge
to be more precise. This explains the higher peak.

QuUIZ I
l i‘ E /A

X

C RECK ©NE Bo¥

Answer: Gaussian Motion

u=18
0?=10
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New Mean Variance

Write a Python program that implements the following equations:

— 1 2
p= L)

2_ 1

1 1
22

O

Here is a skeleton function, which has a function update and takes as its input a mean and a
variance for the first distribution and a mean and a variance for the second distribution. The
function outputs the new mean and the new variance of the product of the two distributions.
Test with the values provided:

def update(mean2, var1, mean2, var2):
new_mean = #enter your code here
new_var = #enter your code here
return [new_mean, new_var]

print update(10., 8., 13., 2.)

You should obtain this result — 12.4, 1.6

Solution:

def update(mean2, var1, mean2, var2):
new_mean = (var2 * mean1 + var1 * mean2) / (var1 + var2)
new_var = 1/ (1/ var1 + 1/ var2)
return [new_mean, new_var}

print update(10., 8., 13., 2.)

o 124,16

Run again with equal variances and use 10 and 12 as means:

def update(mean2, var1, mean2, var2):
new_mean = (var2 * mean1 + var1 * mean2) / (var1 + var2)
new_var = 1/ (1/ var1 + 1/ var2)
return [new_mean, new_var]

print update(10., 4., 12., 4.)

o 110,20
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Congratulations! You just programmed an essential update for the Kalman filter.

Motion Update

The graph below shows the best : -
estimate of where you are (the blue tick ﬁDﬂGU U Pi}Am
on x-axis) and your uncertainty. Say you
move to the right (green line), and that

motion itself has its own set of ‘FtGI +J
uncertainty. You then arrive at a gLt
prediction that adds the motion /\ /\
command to the mean and has an i 1 P '
increased uncertainty compared to the A ;

initial uncertainty (red line).

Intuitively, this makes sense, as you
move to the right your uncertainty
increases because you lose information
about your location (as manifested by the
uncertainty, green Gaussian).

The math: New mean is the old mean plus the motion, u. The new o?is the old o plus the
variance of the motion Gaussian, 2. This is very similar to Unit One, where motion decreased

our knowledge and updates increased our knowledge. This is a fundamental aspect of
localization.

Question 14 (Gaussian Motion):

Given the following, find the new Gaussian values, p?and o2

=3y
o’ =
Move
u=10
r’=6
ut =?
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Question 15 (Predict Function):

Here is some skeleton code. Do the predict function to compute the new updated mean and
variance, using the values given obtain the result [22.0, 8.0]

def update(mean2, var1, mean2, var2):
new_mean = (var2 * mean1 + var1 * mean2) / (var1 + var2)
new_var = 1/ (1/ var1 + 1/ var2)
return [new_mean, new_var]

Answer: Predict Function

Just add the two means and the two variances:

def update(mean2, var1, mean2, var2):
new_mean = (var2 * mean1 + var1 * mean2) / (var1 + var2)
new_var = 1/ (1/ var1 + 1/ var2)
return [new_mean, new_var]
def predict(mean1, var1, mean2, var2):
new_mean = mean1 + mean2
new_var = var1 + var2
return [new_mean, new_var]

print predict(10., 4., 12., 4.)

o 220,80

The entire program above, implements a one-dimensional Kalman filter.

Kalman Filter Code

Write a main program that takes the two functions, update and predict, and feeds them into a
sequence of measurements and motions.

Set the initial measurement, pto 0, with a very large uncertainty of 10,000.

Assume the measurement uncertainty, measurement_sig, is constant at 4, and the motion
uncertainty, motion_sig, is 2.
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def predict (mean1, var1, mean2, var2):
new_mean = mean1 + mean2
new_var = car1 + var2
return [new_mean, new_var]

measurements = [5., 6., 7., 9., 10.]
motion =[1., 1., 2., 1., 1.]
measurement_sig = 4.

motion_sig = 2.

mu = 0.

sig = 10000.

You should get these outputs:

update: [4.99, 3.99] predict: [5.99, 5.99] update: [5.99, 2.39] predict: [6.99, 4.399] update:
[6.99, 2.09] predict: [8.99, 4.09] update: [8.99, 2.02] predict: [9.99, 4.02] update: [9.99, 2.00]
predict: [10.99, 4.00]

Below is our Kalman Filter code:

for n in range(len(measurements)):
[mu, sig] = update(mu, sig, measurements[n], measurement_sig)

print 'update: ', [mu, sig]
[mu, sig] = predict(mu, sig, motion[n], motion_sig)

print 'predict: ', [mu, sig]

It is very important that we understand what we are doing here, so let's go through it together:

This code says "for each measurement that we have, repeat two steps." Those two steps are
the update and the prediction step. In the update step, we incorporate the new measurement
into our previous belief to generate a new belief (which is more certain than our previous
belief). In the prediction step, we use our inferred velocity to once again create a new belief
(which is less certain than our previous belief).

This is what makes Kalman filters really amazing: they never have to worry about more than
two things! In the case of the update step, those two things are the previous belief and the
measurement. With prediction they are the previous belief and the inferred velocity. This
keeps the computational power required of a Kalman filter relatively low and allows it to run in
real time.
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Kalman Filter with Many Dimensions

Example:

Suppose you have a two dimensional state space, like a camera image. Suppose at time {=0,
you observe the object of interest to be at a specific coordinate. One time stamp later you see
the object in another spot.

Question 16 (Kalman Prediction):

Where would you expect the object to be at =37 Fill in the most likely location.

Answer: Kalman Prediction

\ > ¥

In multi-dimensional spaces (like the real world, for example!) the Kalman filter not only allows
you to estimate your positions, but also to infer your velocity from these position
measurements. These inferred velocities then allow you to predict your future position.
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Notice that the sensor itself only sees position, not the actual velocity, the velocity is inferred
from seeing multiple positions.

By being able to figure out the velocity of an object the Kalman filter can make predictions
about future locations that incorporate velocity. This is why Kalman filters are so popular in
Artificial Intelligence.

Multivariate Gaussians

So far we have discussed one dimensional motion, and though this captures all the essentials
of a Kalman filter, we should at least briefly discuss what happens when we go from one
dimension to higher dimensions.

1. Instead of being a number, the mean becomes a vector with one element for each of
the dimensions.

2. The variance is replaced by the covariance, which is a matrix with d rows and d
columns when the space has d dimensions.

3. This gives us a complicated formula, but it is not something you need to remember.

Here is an illustration of multivariate Gaussians. In this image the mean is indicated by x, and
¥, and the covariance is the contour lines:

<

Xo

Gaussians with a smaller amount of uncertainty would have smaller contour lines:

©
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It is also possible to have a small uncertainty in one dimension and a huge uncertainty in
another:

When the Gaussian is tilted it means the x and y are correlated:

(oRREL AT o0

]

Build a two-dimensional estimate, where the x-axis is the location and the y-axis is the
velocity, which we will denote as v, though keep in mind that Sebastian uses an x with a dot
over it. (An x with a single dot over it represents the first derivative of x (position) with respect
to t (time), which is another way to express velocity).

=\ :1 .-S
- e < If, initially, you know location but not

=== ; velocity, you can represent it with an

L 4 3 4§ .

3 elongated Gaussian around the correct

>'< P location, but really broad in the space of
velocities.

In the prediction step, since you do not
4 5 know the velocity, you cannot predict

. L 3 t Copyright © 2014 Udacity, Inc. All Rights Reserved.




what location you are going to assume. However, there are some interesting correlations.
Assume the velocity is 0, where would the posterior be after the prediction?

If you know you start at location 1, then a velocity of zero would leave you in the exact same
place, (1, 0).

SELIN T N

Question 17 (Kalman Filter Prediction):

Using the same graph, assume the velocity is one, where would the prediction be one
timestamp later, starting at location one (1, 0), and velocity one? Select the one that makes
the most sense.
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Answer: Kalman Filter Prediction

AT 1 N I

=]

Question 18 (Another Prediction):

Consider a velocity of two with the same givens as before. Where would you expect the most

plausible prediction to be?
' o LB
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Answer: Another Prediction

, g L

A

Keys Kalman Filters

When you find multiple data points, you find that
all of the possibilities on the one-dimensional
Gaussian (the blue one), link to a
two-dimensional Gaussian (the red one).

Fold in the second observation t=2, which says
nothing about velocity, but only about the
location.

Multiply the prior (the red Gaussian) and the
measurement (the green Gaussian) to obtain a
really good estimate of an object's velocity and
location. We aren't going to cover the math involved in multiplying together Gaussians of
multiple dimensions, but you can try it on your
own if you'd like or consult the supplementary
material for more information on the subject.
When we do the math, we find that we get a 1 2 3
peakier distribution in both the x and y directions.
How convenient! We now know our position and
velocity with pretty high certainty!

=g 3

So far we have only been able to observe one
variable, and use that observation to infer
another variable using a set of equations that
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say that the location after a time-step, is the old location plus the velocity.

Our prediction for our new position, x', would
then just be the sum of our previous location
belief, x, and our motion, u.

A L R

X'=x+u

Variables of a Kalman filter are often called
"States," because they reflect states of the
physical world, like where an object is and
how fast it is moving. Within Kalman filters
there are two sub-sets:

1. Observables - momentary location

2. Hidden - in our example this was the
velocity. We could not measure it directly, only infer it from our position
measurements.

When these two sub-sets interact, subsequent observations of the observables give us
information about the hidden variables, so that we can make an estimate of what the hidden
variable are.

From multiple observations of the places of the object's location, we can discover how fast it
is moving. Other filters can generate this information, but the Kalman filter is the most
efficient.

Kalman Filter Design

When designing a Kalman Filter, you

effectively need two things, a state X Lo
transition function and a ( ) & (‘ ) (

>f) p
measurement function, both of which X , O | & X

are represented as matrices. We call F % X
the state transition matrix F and the -5 L&— ( | b ) (J'()

measurement matrix H. T

If you are a little rusty with linear

algebra, feel free to check out the

videos from Khan Academy or MIT Open Courseware to refresh your understanding. The MIT
OCW link may be more helpful if you have a little bit of math background, while Khan
Academy is better if you have never seen a matrix before.
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We separate our Kalman filter into two steps: the update step and the prediction step. The
equations for these steps and the names of the matrices and variables are given below. You
might also want to check out the excellent write-up by one of students of the first iterations of
CS373 class Kalman Filter Matrices.

VPDATE redichou
: . . xm - F X +q
'}[; ﬁg% utanee P F-F F*
t- g}mk Jrfn.us.il‘w uckn < Mesgu el upcut
o1 VeckoV «2-Rx
:::-.;M - Sspetw'eb

<

v 1

This is just a generalization of the simple one-dimensional case that we have been talking
about. If you would like to learn more about the details of a real Kalman filter, | recommend
you check out the course notes from MIT's class on identification, estimation, and learning.
Notes 5-8 are relevant to this discussion.

Kalman Matrices

Here we have a challenging programming problem. You are going to write a multidimensional
Kalman filter! You can start by using the matrix class implemented by Professor Thrun . This

class can perform all of the matrix manipulations that we need to utilize the formulas that we

discussed in the previous question.

You can find a small version of this in libraries. Make a matrix with a command like this:

a = matrix([[10.],[10]])

The argument in parentheses is a two dimensional matrix and in this case it is a vertical
vector. You can print out the result of the vertical vector with the show command:

a= matrix([[1 0-],[1 0]])
a.show()

You can compute the transpose to find the horizontal vector:
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a = matrix([[10.],[10]])
b = a.transpose()
a.show()

If you want to multiply a matrix by a vector:

a = matrix([[10.],[10]])

F = matrix([[12., 8.], [6.,2.]])
b = a.transpose()

F.show()

You can also multiply F and a, and set that equal to b, to show the result of the vector:

a = matrix([[10.],[10]])

F = matrix([[12., 8.],[6.,2.]])
b=F*a

F.show()

[200.0] 80.0]

Here is what a matrix library looks like:

measurements = [1,2,3]

X = matrix
p = matrix
u = matrix
F = matrix

—~

[[0.], [0.]]) # initial state (location and velocity)
[[1000., 0.], [0., 1000.]]) # initial uncertainty
[[0.], [0.]]) # external motion

[[1., 1], [0,1.]]) # next state function

H = matrix([[1., 0]]) #measurement function

R = matrix([[1.]]) # measurement uncertainty

I = matrix([[1., 0.], [0., 1.]]) # identity matrix

_ —~

—~

filter(x, P)

When you run the filter with the given measurements, you can estimate the velocity to make
better predictions.

When you run the filter you want to return the measurement update first and then the motion
update.

Fill in this empty procedure to print out the resulting estimates for x and P:
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def filter(x, P):
for n in range(len(measurements)):

#measurement update
#prediction

print 'x="
x.show()
print 'P="
P.show()

Once you fill it in you get an output. This output iteratively displays x and P as they update.
Notice that at the first output of x, we know nothing about the velocity. This is because we
need multiple location measurements to estimate velocity. As we continue making
measurements and motions, our estimate converges to the correct position and velocity.

Question 19 (Kalman Matrices):

Write the algorithm filter(x, p) that outputs the exact values, by implementing the given
equations and familiarizing yourself with the matrix class. Fill in the value in accordance to
the things that were shown for the multivariate Kalman filter in the previous video.

Answer: Kalman Matrices

Here's the code Sebastian wrote:

matrix(measurements[n])
Z-(H*x)

H* P * H.transpose() + R

P * H.transpose() * S.inverse()
x+ (K*y)

X XW< N
L T T L |

P=(-(K*"H)*P

# prediction
X = (F * X) +Uu
P =F * P * F.transpose()

This code is not trivial! It is the core of the Google self-driving car's ability to track other
vehicles. This is the line by line implementation of what you've seen before, the measurement
update and the prediction.

First, a measurement update of measurement n. The error calculation (y = Z - (H * x)), the
matrix S, the Kalman gain K with the inverse, and then back to the next prediction, x and the
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measurement update, P. Finally, you have the prediction step which implements the
equations you have learned.

If you were able to write this program, which is really, really involved, you now understand
Kalman filters and you have implemented a multi-dimensional Kalman filter all on your own
using the fairly mechanical matrix class that was written for you.

Running this program returns a prediction and a velocity update. These are the equations you
just implemented:

UPDATE Pr(dic hou

iy v =FX+y
;-ﬁﬂh;i‘:l'f (o AaUce R FPFT
E- chek Hausihioy sz Measurened upﬂut
v = Wokor Vedo/ %’j?-‘l"vx

Z:M%ur(_ﬁgul- = HPHT-{:IIR

H:mmwt@‘lﬁ A A
. Meuaa) 1Ay, x'=x+(|<7)

T=idublywbit P (T-KH)P

For the Google self-driving car this is the essential model for how it makes predictions about
where other cars are and how fast they are going. The car uses radar on the front bumper
that measures the distance to other vehicles and also gives a noisy estimate of the velocity.
Additionally, the car uses its lasers, which are located on the roof, to measure the distance to
other cars and gets a noisy estimate of the velocity.
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So, when the Google car is on the road it uses radars and lasers to estimate the distance and
the velocity of other vehicles on the road using a Kalman filter, where it feeds in range data
from the laser and uses state spaces of the relative distance, x and y, and the relative velocity
of xand y.

CONGRATULATIONS, You’ve finished Unit 2!!!
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